Cargando…
A cell permeable bimane-constrained PCNA-interacting peptide
The human sliding clamp protein known as proliferating cell nuclear antigen (PCNA) orchestrates DNA-replication and -repair and as such is an ideal therapeutic target for proliferative diseases, including cancer. Peptides derived from the human p21 protein bind PCNA with high affinity via a 3(10)-he...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
RSC
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8496261/ https://www.ncbi.nlm.nih.gov/pubmed/34704055 http://dx.doi.org/10.1039/d1cb00113b |
_version_ | 1784579718680412160 |
---|---|
author | Horsfall, Aimee J. Vandborg, Beth A. Kikhtyak, Zoya Scanlon, Denis B. Tilley, Wayne D. Hickey, Theresa E. Bruning, John B. Abell, Andrew D. |
author_facet | Horsfall, Aimee J. Vandborg, Beth A. Kikhtyak, Zoya Scanlon, Denis B. Tilley, Wayne D. Hickey, Theresa E. Bruning, John B. Abell, Andrew D. |
author_sort | Horsfall, Aimee J. |
collection | PubMed |
description | The human sliding clamp protein known as proliferating cell nuclear antigen (PCNA) orchestrates DNA-replication and -repair and as such is an ideal therapeutic target for proliferative diseases, including cancer. Peptides derived from the human p21 protein bind PCNA with high affinity via a 3(10)-helical binding conformation and are known to shut down DNA-replication. Here, we present studies on short analogues of p21 peptides (143–151) conformationally constrained with a covalent linker between i, i + 4 separated cysteine residues at positions 145 and 149 to access peptidomimetics that target PCNA. The resulting macrocycles bind PCNA with K(D) values ranging from 570 nM to 3.86 μM, with the bimane-constrained peptide 7 proving the most potent. Subsequent X-ray crystallography and computational modelling studies of the macrocyclic peptides bound to PCNA indicated only the high-affinity peptide 7 adopted the classical 3(10)-helical binding conformation. This suggests the 3(10)-helical conformation is critical to high affinity PCNA binding, however NMR secondary shift analysis of peptide 7 revealed this secondary structure was not well-defined in solution. Peptide 7 is cell permeable and localised to the cell cytosol of breast cancer cells (MDA-MB-468), revealed by confocal microscopy showing blue fluorescence of the bimane linker. The inherent fluorescence of the bimane moiety present in peptide 7 allowed it to be directly imaged in the cell uptake assay, without attachment of an auxiliary fluorescent tag. This highlights a significant benefit of using a bimane constraint to access conformationally constrained macrocyclic peptides. This study identifies a small peptidomimetic that binds PCNA with higher affinity than previous reported p21 macrocycles, and is cell permeable, providing a significant advance toward development of a PCNA inhibitor for therapeutic applications. |
format | Online Article Text |
id | pubmed-8496261 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | RSC |
record_format | MEDLINE/PubMed |
spelling | pubmed-84962612021-10-25 A cell permeable bimane-constrained PCNA-interacting peptide Horsfall, Aimee J. Vandborg, Beth A. Kikhtyak, Zoya Scanlon, Denis B. Tilley, Wayne D. Hickey, Theresa E. Bruning, John B. Abell, Andrew D. RSC Chem Biol Chemistry The human sliding clamp protein known as proliferating cell nuclear antigen (PCNA) orchestrates DNA-replication and -repair and as such is an ideal therapeutic target for proliferative diseases, including cancer. Peptides derived from the human p21 protein bind PCNA with high affinity via a 3(10)-helical binding conformation and are known to shut down DNA-replication. Here, we present studies on short analogues of p21 peptides (143–151) conformationally constrained with a covalent linker between i, i + 4 separated cysteine residues at positions 145 and 149 to access peptidomimetics that target PCNA. The resulting macrocycles bind PCNA with K(D) values ranging from 570 nM to 3.86 μM, with the bimane-constrained peptide 7 proving the most potent. Subsequent X-ray crystallography and computational modelling studies of the macrocyclic peptides bound to PCNA indicated only the high-affinity peptide 7 adopted the classical 3(10)-helical binding conformation. This suggests the 3(10)-helical conformation is critical to high affinity PCNA binding, however NMR secondary shift analysis of peptide 7 revealed this secondary structure was not well-defined in solution. Peptide 7 is cell permeable and localised to the cell cytosol of breast cancer cells (MDA-MB-468), revealed by confocal microscopy showing blue fluorescence of the bimane linker. The inherent fluorescence of the bimane moiety present in peptide 7 allowed it to be directly imaged in the cell uptake assay, without attachment of an auxiliary fluorescent tag. This highlights a significant benefit of using a bimane constraint to access conformationally constrained macrocyclic peptides. This study identifies a small peptidomimetic that binds PCNA with higher affinity than previous reported p21 macrocycles, and is cell permeable, providing a significant advance toward development of a PCNA inhibitor for therapeutic applications. RSC 2021-07-21 /pmc/articles/PMC8496261/ /pubmed/34704055 http://dx.doi.org/10.1039/d1cb00113b Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/ |
spellingShingle | Chemistry Horsfall, Aimee J. Vandborg, Beth A. Kikhtyak, Zoya Scanlon, Denis B. Tilley, Wayne D. Hickey, Theresa E. Bruning, John B. Abell, Andrew D. A cell permeable bimane-constrained PCNA-interacting peptide |
title | A cell permeable bimane-constrained PCNA-interacting peptide |
title_full | A cell permeable bimane-constrained PCNA-interacting peptide |
title_fullStr | A cell permeable bimane-constrained PCNA-interacting peptide |
title_full_unstemmed | A cell permeable bimane-constrained PCNA-interacting peptide |
title_short | A cell permeable bimane-constrained PCNA-interacting peptide |
title_sort | cell permeable bimane-constrained pcna-interacting peptide |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8496261/ https://www.ncbi.nlm.nih.gov/pubmed/34704055 http://dx.doi.org/10.1039/d1cb00113b |
work_keys_str_mv | AT horsfallaimeej acellpermeablebimaneconstrainedpcnainteractingpeptide AT vandborgbetha acellpermeablebimaneconstrainedpcnainteractingpeptide AT kikhtyakzoya acellpermeablebimaneconstrainedpcnainteractingpeptide AT scanlondenisb acellpermeablebimaneconstrainedpcnainteractingpeptide AT tilleywayned acellpermeablebimaneconstrainedpcnainteractingpeptide AT hickeytheresae acellpermeablebimaneconstrainedpcnainteractingpeptide AT bruningjohnb acellpermeablebimaneconstrainedpcnainteractingpeptide AT abellandrewd acellpermeablebimaneconstrainedpcnainteractingpeptide AT horsfallaimeej cellpermeablebimaneconstrainedpcnainteractingpeptide AT vandborgbetha cellpermeablebimaneconstrainedpcnainteractingpeptide AT kikhtyakzoya cellpermeablebimaneconstrainedpcnainteractingpeptide AT scanlondenisb cellpermeablebimaneconstrainedpcnainteractingpeptide AT tilleywayned cellpermeablebimaneconstrainedpcnainteractingpeptide AT hickeytheresae cellpermeablebimaneconstrainedpcnainteractingpeptide AT bruningjohnb cellpermeablebimaneconstrainedpcnainteractingpeptide AT abellandrewd cellpermeablebimaneconstrainedpcnainteractingpeptide |