Cargando…

Interpretable artificial neural networks incorporating Bayesian alphabet models for genome-wide prediction and association studies

In conventional linear models for whole-genome prediction and genome-wide association studies (GWAS), it is usually assumed that the relationship between genotypes and phenotypes is linear. Bayesian neural networks have been used to account for non-linearity such as complex genetic architectures. He...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhao, Tianjing, Fernando, Rohan, Cheng, Hao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8496266/
https://www.ncbi.nlm.nih.gov/pubmed/34499126
http://dx.doi.org/10.1093/g3journal/jkab228

Ejemplares similares