Cargando…
Interpretable artificial neural networks incorporating Bayesian alphabet models for genome-wide prediction and association studies
In conventional linear models for whole-genome prediction and genome-wide association studies (GWAS), it is usually assumed that the relationship between genotypes and phenotypes is linear. Bayesian neural networks have been used to account for non-linearity such as complex genetic architectures. He...
Autores principales: | Zhao, Tianjing, Fernando, Rohan, Cheng, Hao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8496266/ https://www.ncbi.nlm.nih.gov/pubmed/34499126 http://dx.doi.org/10.1093/g3journal/jkab228 |
Ejemplares similares
-
Extension of the bayesian alphabet for genomic selection
por: Habier, David, et al.
Publicado: (2011) -
Evaluation of Bayesian alphabet and GBLUP based on different marker density for genomic prediction in Alpine Merino sheep
por: Zhu, Shaohua, et al.
Publicado: (2021) -
Fast parallelized sampling of Bayesian regression models for whole-genome prediction
por: Zhao, Tianjing, et al.
Publicado: (2020) -
Genomic Bayesian Confirmatory Factor Analysis and Bayesian Network To Characterize a Wide Spectrum of Rice Phenotypes
por: Yu, Haipeng, et al.
Publicado: (2019) -
Mega-scale Bayesian regression methods for genome-wide prediction and association studies with thousands of traits
por: Qu, Jiayi, et al.
Publicado: (2022)