Cargando…

Quantitative neuronal morphometry by supervised and unsupervised learning

We present a protocol to characterize the morphological properties of individual neurons reconstructed from microscopic imaging. We first describe a simple procedure to extract relevant morphological features from digital tracings of neural arbors. Then, we provide detailed steps on classification,...

Descripción completa

Detalles Bibliográficos
Autores principales: Bijari, Kayvan, Valera, Gema, López-Schier, Hernán, Ascoli, Giorgio A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8496329/
https://www.ncbi.nlm.nih.gov/pubmed/34647039
http://dx.doi.org/10.1016/j.xpro.2021.100867
Descripción
Sumario:We present a protocol to characterize the morphological properties of individual neurons reconstructed from microscopic imaging. We first describe a simple procedure to extract relevant morphological features from digital tracings of neural arbors. Then, we provide detailed steps on classification, clustering, and statistical analysis of the traced cells based on morphological features. We illustrate the pipeline design using specific examples from zebrafish anatomy. Our approach can be readily applied and generalized to the characterization of axonal, dendritic, or glial geometry. For complete context and scientific motivation for the studies and datasets used here, refer to Valera et al. (2021).