Cargando…
Quantitative neuronal morphometry by supervised and unsupervised learning
We present a protocol to characterize the morphological properties of individual neurons reconstructed from microscopic imaging. We first describe a simple procedure to extract relevant morphological features from digital tracings of neural arbors. Then, we provide detailed steps on classification,...
Autores principales: | Bijari, Kayvan, Valera, Gema, López-Schier, Hernán, Ascoli, Giorgio A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8496329/ https://www.ncbi.nlm.nih.gov/pubmed/34647039 http://dx.doi.org/10.1016/j.xpro.2021.100867 |
Ejemplares similares
-
An open-source framework for neuroscience metadata management applied to digital reconstructions of neuronal morphology
por: Bijari, Kayvan, et al.
Publicado: (2020) -
Assisted neuroscience knowledge extraction via machine learning applied to neural reconstruction metadata on NeuroMorpho.Org
por: Bijari, Kayvan, et al.
Publicado: (2022) -
Supervised and unsupervised learning for data science
por: Berry, Michael W, et al.
Publicado: (2020) -
Unsupervised classification of brain-wide axons reveals neuronal projection blueprint
por: Wheeler, Diek W., et al.
Publicado: (2023) -
Supervised and Unsupervised Learning Technology in the Study of Rodent Behavior
por: Gris, Katsiaryna V., et al.
Publicado: (2017)