Cargando…
Preoperative CT-Based Deep Learning Model for Predicting Risk Stratification in Patients With Gastrointestinal Stromal Tumors
OBJECTIVE: To develop and evaluate a deep learning model (DLM) for predicting the risk stratification of gastrointestinal stromal tumors (GISTs). METHODS: Preoperative contrast-enhanced CT images of 733 patients with GISTs were retrospectively obtained from two centers between January 2011 and June...
Autores principales: | Kang, Bing, Yuan, Xianshun, Wang, Hexiang, Qin, Songnan, Song, Xuelin, Yu, Xinxin, Zhang, Shuai, Sun, Cong, Zhou, Qing, Wei, Ying, Shi, Feng, Yang, Shifeng, Wang, Ximing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8496403/ https://www.ncbi.nlm.nih.gov/pubmed/34631589 http://dx.doi.org/10.3389/fonc.2021.750875 |
Ejemplares similares
-
T1 Stage Clear Cell Renal Cell Carcinoma: A CT-Based Radiomics Nomogram to Estimate the Risk of Recurrence and Metastasis
por: Kang, Bing, et al.
Publicado: (2020) -
Development and validation of A CT-based radiomics nomogram for prediction of synchronous distant metastasis in clear cell renal cell carcinoma
por: Yu, Xinxin, et al.
Publicado: (2023) -
CT Radiomics Model for Discriminating the Risk Stratification of Gastrointestinal Stromal Tumors: A Multi-Class Classification and Multi-Center Study
por: Chen, Zhonghua, et al.
Publicado: (2021) -
Corrigendum: Development and validation of A CT-based radiomics nomogram for prediction of synchronous distant metastasis in clear cell renal cell carcinoma
por: Yu, Xinxin, et al.
Publicado: (2023) -
CT Radiomics for the Preoperative Prediction of Ki67 Index in Gastrointestinal Stromal Tumors: A Multi-Center Study
por: Zhao, Yilei, et al.
Publicado: (2021)