Cargando…

Mitophagy in degenerative joint diseases

Mitochondrial dysfunction is involved in aging and multiple degenerative diseases, including intervertebral disc degeneration (IVDD) and osteoarthritis (OA). Thus, the maintenance of mitochondria homeostasis and function is important. Mitophagy, a process that selectively clears damaged or dysfuncti...

Descripción completa

Detalles Bibliográficos
Autores principales: Sun, Kai, Jing, Xingzhi, Guo, Jiachao, Yao, Xudong, Guo, Fengjing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Taylor & Francis 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8496714/
https://www.ncbi.nlm.nih.gov/pubmed/32967533
http://dx.doi.org/10.1080/15548627.2020.1822097
_version_ 1784579810268282880
author Sun, Kai
Jing, Xingzhi
Guo, Jiachao
Yao, Xudong
Guo, Fengjing
author_facet Sun, Kai
Jing, Xingzhi
Guo, Jiachao
Yao, Xudong
Guo, Fengjing
author_sort Sun, Kai
collection PubMed
description Mitochondrial dysfunction is involved in aging and multiple degenerative diseases, including intervertebral disc degeneration (IVDD) and osteoarthritis (OA). Thus, the maintenance of mitochondria homeostasis and function is important. Mitophagy, a process that selectively clears damaged or dysfunctional mitochondria through autophagic machinery, functions to maintain mitochondrial quality control and homeostasis. IVDD and OA are similar joint diseases involving the degradation of cartilaginous tissues that are mainly caused by oxidative stress, cell apoptosis and extracellular matrix (ECM) degradation. Over the past decade, accumulating evidence indicates the essential role of mitophagy in the pathogenesis of IVDD and OA. Importantly, strategies by the regulation of mitophagy exert beneficial effects in the pre-clinical experiments. Given the importance and novelty of mitophagy, we provide an overview of mitophagy pathways and discuss the roles of mitophagy in IVDD and OA. We also highlight the potential of targeting mitophagy for the treatment of degenerative joint diseases. Abbreviations: AD: Alzheimer disease; AF: annulus fibrosus; ADORA2A/A2AR: adenosine A2a receptor; AMBRA1: autophagy and beclin 1 regulator 1; BMSCs: bone marrow mesenchymal stem cells; BNIP3: BCL2 interacting protein 3; BNIP3L/NIX: BCL2/adenovirus E1B interacting protein 3-like; CDH6: cadherin 6; CEP: cartilaginous endplates; circRNA: circular RNA; DNM1L/DRP1: dynamin 1-like; ECM: extracellular matrix; HIF1A: hypoxia inducible factor 1: alpha subunit; IL1B: interleukin 1 beta; IMM: inner mitochondrial membranes; IVDD: intervertebral disc degeneration; MAPK8/JNK: mitogen-activated protein kinase 8; MFN1: mitofusin 1; MFN2: mitofusin 2; MIA: monosodium iodoacetate; RHOT/MIRO: ras homolog family member T; MMP: mitochondrial transmembrane potential; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; NFE2L2: nuclear factor: erythroid 2 like 2; NP: nucleus pulposus; OA: osteoarthritis; OPA1: OPA1: mitochondrial dynamin like GTPase; OPTN: optineurin; PRKN: parkin RBR E3 ubiquitin protein ligase; PD: Parkinson disease; PGAM5: PGAM family member 5; PPARGC1A/PGC-1A: peroxisome proliferator activated receptor: gamma: coactivator 1 alpha; PHF23: PHD finger protein 23; PINK1: PTEN induced putative kinase 1; ROS: reactive oxygen species; SfMSCs: synovial fluid MSCs; SIRT1: sirtuin 1; SIRT2: sirtuin 2; SIRT3: sirtuin 3; SQSTM1/p62: sequestosome 1; TNF: tumor necrosis factor; Ub: ubiquitin; UBL: ubiquitin-like; VDAC: voltage-dependent anion channel.
format Online
Article
Text
id pubmed-8496714
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Taylor & Francis
record_format MEDLINE/PubMed
spelling pubmed-84967142021-10-08 Mitophagy in degenerative joint diseases Sun, Kai Jing, Xingzhi Guo, Jiachao Yao, Xudong Guo, Fengjing Autophagy Review Mitochondrial dysfunction is involved in aging and multiple degenerative diseases, including intervertebral disc degeneration (IVDD) and osteoarthritis (OA). Thus, the maintenance of mitochondria homeostasis and function is important. Mitophagy, a process that selectively clears damaged or dysfunctional mitochondria through autophagic machinery, functions to maintain mitochondrial quality control and homeostasis. IVDD and OA are similar joint diseases involving the degradation of cartilaginous tissues that are mainly caused by oxidative stress, cell apoptosis and extracellular matrix (ECM) degradation. Over the past decade, accumulating evidence indicates the essential role of mitophagy in the pathogenesis of IVDD and OA. Importantly, strategies by the regulation of mitophagy exert beneficial effects in the pre-clinical experiments. Given the importance and novelty of mitophagy, we provide an overview of mitophagy pathways and discuss the roles of mitophagy in IVDD and OA. We also highlight the potential of targeting mitophagy for the treatment of degenerative joint diseases. Abbreviations: AD: Alzheimer disease; AF: annulus fibrosus; ADORA2A/A2AR: adenosine A2a receptor; AMBRA1: autophagy and beclin 1 regulator 1; BMSCs: bone marrow mesenchymal stem cells; BNIP3: BCL2 interacting protein 3; BNIP3L/NIX: BCL2/adenovirus E1B interacting protein 3-like; CDH6: cadherin 6; CEP: cartilaginous endplates; circRNA: circular RNA; DNM1L/DRP1: dynamin 1-like; ECM: extracellular matrix; HIF1A: hypoxia inducible factor 1: alpha subunit; IL1B: interleukin 1 beta; IMM: inner mitochondrial membranes; IVDD: intervertebral disc degeneration; MAPK8/JNK: mitogen-activated protein kinase 8; MFN1: mitofusin 1; MFN2: mitofusin 2; MIA: monosodium iodoacetate; RHOT/MIRO: ras homolog family member T; MMP: mitochondrial transmembrane potential; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; NFE2L2: nuclear factor: erythroid 2 like 2; NP: nucleus pulposus; OA: osteoarthritis; OPA1: OPA1: mitochondrial dynamin like GTPase; OPTN: optineurin; PRKN: parkin RBR E3 ubiquitin protein ligase; PD: Parkinson disease; PGAM5: PGAM family member 5; PPARGC1A/PGC-1A: peroxisome proliferator activated receptor: gamma: coactivator 1 alpha; PHF23: PHD finger protein 23; PINK1: PTEN induced putative kinase 1; ROS: reactive oxygen species; SfMSCs: synovial fluid MSCs; SIRT1: sirtuin 1; SIRT2: sirtuin 2; SIRT3: sirtuin 3; SQSTM1/p62: sequestosome 1; TNF: tumor necrosis factor; Ub: ubiquitin; UBL: ubiquitin-like; VDAC: voltage-dependent anion channel. Taylor & Francis 2020-09-24 /pmc/articles/PMC8496714/ /pubmed/32967533 http://dx.doi.org/10.1080/15548627.2020.1822097 Text en © 2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) ), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.
spellingShingle Review
Sun, Kai
Jing, Xingzhi
Guo, Jiachao
Yao, Xudong
Guo, Fengjing
Mitophagy in degenerative joint diseases
title Mitophagy in degenerative joint diseases
title_full Mitophagy in degenerative joint diseases
title_fullStr Mitophagy in degenerative joint diseases
title_full_unstemmed Mitophagy in degenerative joint diseases
title_short Mitophagy in degenerative joint diseases
title_sort mitophagy in degenerative joint diseases
topic Review
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8496714/
https://www.ncbi.nlm.nih.gov/pubmed/32967533
http://dx.doi.org/10.1080/15548627.2020.1822097
work_keys_str_mv AT sunkai mitophagyindegenerativejointdiseases
AT jingxingzhi mitophagyindegenerativejointdiseases
AT guojiachao mitophagyindegenerativejointdiseases
AT yaoxudong mitophagyindegenerativejointdiseases
AT guofengjing mitophagyindegenerativejointdiseases