Cargando…
A Voting-Enhanced Dynamic-Window-Length Classifier for SSVEP-Based BCIs
We present a dynamic window-length classifier for steady-state visual evoked potential (SSVEP)-based brain-computer interfaces (BCIs) that does not require the user to choose a feature extraction method or channel set. Instead, the classifier uses multiple feature extraction methods and channel sele...
Autores principales: | Habibzadeh, Hadi, Norton, James J. S., Vaughan, Theresa M., Soyata, Tolga, Zois, Daphney-Stavroula |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8496754/ https://www.ncbi.nlm.nih.gov/pubmed/34428141 http://dx.doi.org/10.1109/TNSRE.2021.3106876 |
Ejemplares similares
-
A Survey of Stimulation Methods Used in SSVEP-Based BCIs
por: Zhu, Danhua, et al.
Publicado: (2010) -
Comparison of Different Visual Feedback Methods for SSVEP-Based BCIs
por: Benda, Mihaly, et al.
Publicado: (2020) -
Enhancing performance of subject-specific models via subject-independent information for SSVEP-based BCIs
por: Mehdizavareh, Mohammad Hadi, et al.
Publicado: (2020) -
Denoising Autoencoder-Based Feature Extraction to Robust SSVEP-Based BCIs
por: Chen, Yeou-Jiunn, et al.
Publicado: (2021) -
Facilitating Applications of SSVEP-Based BCIs by Within-Subject Information Transfer
por: Liu, Xiaobing, et al.
Publicado: (2022)