Cargando…
Evaluation of the Integrated Pulmonary Index® during non-anesthesiologist sedation for percutaneous endoscopic gastrostomy
Standard monitoring of heart rate, blood pressure and arterial oxygen saturation during endoscopy is recommended by current guidelines on procedural sedation. A number of studies indicated a reduction of hypoxic (art. oxygenation < 90% for > 15 s) and severe hypoxic events (art. oxygenation &l...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Netherlands
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8497449/ https://www.ncbi.nlm.nih.gov/pubmed/32734356 http://dx.doi.org/10.1007/s10877-020-00563-2 |
Sumario: | Standard monitoring of heart rate, blood pressure and arterial oxygen saturation during endoscopy is recommended by current guidelines on procedural sedation. A number of studies indicated a reduction of hypoxic (art. oxygenation < 90% for > 15 s) and severe hypoxic events (art. oxygenation < 85%) by additional use of capnography. Therefore, U.S. and the European guidelines comment that additional capnography monitoring can be considered in long or deep sedation. Integrated Pulmonary Index® (IPI) is an algorithm-based monitoring parameter that combines oxygenation measured by pulse oximetry (art. oxygenation, heart rate) and ventilation measured by capnography (respiratory rate, apnea > 10 s, partial pressure of end-tidal carbon dioxide [PetCO(2)]). The aim of this paper was to analyze the value of IPI as parameter to monitor the respiratory status in patients receiving propofol sedation during PEG-procedure. Patients reporting for PEG-placement under sedation were randomized 1:1 in either standard monitoring group (SM) or capnography monitoring group including IPI (IM). Heart rate, blood pressure and arterial oxygen saturation were monitored in SM. In IM additional monitoring was performed measuring PetCO(2), respiratory rate and IPI. Capnography and IPI values were recorded for all patients but were only visible to the endoscopic team for the IM-group. IPI values range between 1 and 10 (10 = normal; 8–9 = within normal range; 7 = close to normal range, requires attention; 5–6 = requires attention and may require intervention; 3–4 = requires intervention; 1–2 requires immediate intervention). Results on capnography versus standard monitoring of the same study population was published previously. A total of 147 patients (74 in SM and 73 in IM) were included in the present study. Hypoxic events occurred in 62 patients (42%) and severe hypoxic events in 44 patients (29%), respectively. Baseline characteristics were equally distributed in both groups. IPI = 1, IPI < 7 as well as the parameters PetCO(2) = 0 mmHg and apnea > 10 s had a high sensitivity for hypoxic and severe hypoxic events, respectively (IPI = 1: 81%/81% [hypoxic/severe hypoxic event], IPI < 7: 82%/88%, PetCO(2): 69%/68%, apnea > 10 s: 84%/84%). All four parameters had a low specificity for both hypoxic and severe hypoxic events (IPI = 1: 13%/12%, IPI < 7: 7%/7%, PetCO(2): 29%/27%, apnea > 10 s: 7%/7%). In multivariate analysis, only SM and PetCO(2) = 0 mmHg were independent risk factors for hypoxia. IPI (IPI = 1 and IPI < 7) as well as the individual parameters PetCO(2) = 0 mmHg and apnea > 10 s allow a fast and convenient conclusion on patients’ respiratory status in a morbid patient population. Sensitivity is good for most parameters, but specificity is poor. In conclusion, IPI can be a useful metric to assess respiratory status during propofol-sedation in PEG-placement. However, IPI was not superior to PetCO(2) and apnea > 10 s. |
---|