Cargando…
Ni-catalyzed hydroalkylation of olefins with N-sulfonyl amines
Hydroalkylation, the direct addition of a C(sp(3))–H bond across an olefin, is a desirable strategy to produce valuable, complex structural motifs in functional materials, pharmaceuticals, and natural products. Herein, we report a reliable method for accessing α-branched amines via nickel-catalyzed...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8497516/ https://www.ncbi.nlm.nih.gov/pubmed/34620857 http://dx.doi.org/10.1038/s41467-021-26194-y |
Sumario: | Hydroalkylation, the direct addition of a C(sp(3))–H bond across an olefin, is a desirable strategy to produce valuable, complex structural motifs in functional materials, pharmaceuticals, and natural products. Herein, we report a reliable method for accessing α-branched amines via nickel-catalyzed hydroalkylation reactions. Specifically, by using bis(cyclooctadiene)nickel (Ni(cod)(2)) together with a phosphine ligand, we achieved a formal C(sp(3))–H bond insertion reaction between olefins and N-sulfonyl amines without the need for an external hydride source. The amine not only provides the alkyl motif but also delivers hydride to the olefin by means of a nickel-engaged β–hydride elimination/reductive elimination process. This method provides a platform for constructing chiral α-branched amines by using a P-chiral ligand, demonstrating its potential utility in organic synthesis. Notably, a sulfonamidyl boronate complex formed in situ under basic conditions promotes ring-opening of the azanickellacycle reaction intermediate, leading to a significant improvement of the catalytic efficiency. |
---|