Cargando…
Using machine learning methods for supporting GR2M model in runoff estimation in an ungauged basin
Estimating monthly runoff variation, especially in ungauged basins, is inevitable for water resource planning and management. The present study aimed to evaluate the regionalization methods for determining regional parameters of the rainfall-runoff model (i.e., GR2M model). Two regionalization metho...
Autores principales: | Ditthakit, Pakorn, Pinthong, Sirimon, Salaeh, Nureehan, Binnui, Fadilah, Khwanchum, Laksanara, Pham, Quoc Bao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8497588/ https://www.ncbi.nlm.nih.gov/pubmed/34620910 http://dx.doi.org/10.1038/s41598-021-99164-5 |
Ejemplares similares
-
A Machine Learning Approach to Predict Watershed Health Indices for Sediments and Nutrients at Ungauged Basins
por: Mallya, Ganeshchandra, et al.
Publicado: (2023) -
Numerical Approach for Channel Flood Routing in an Ungauged Basin: a Case Study in Kulsi River Basin, India
por: Bharali, Biswadeep, et al.
Publicado: (2022) -
Fuzzy clustering and distributed model for streamflow estimation in ungauged watersheds
por: Mosavi, Amirhosein, et al.
Publicado: (2021) -
IHACRES, GR4J and MISD-based multi conceptual-machine learning approach for rainfall-runoff modeling
por: Mohammadi, Babak, et al.
Publicado: (2022) -
Temperature lapse rate estimation and snowmelt runoff simulation in a high-altitude basin
por: Zhao, Keke, et al.
Publicado: (2022)