Cargando…
Deep learning models in detection of dietary supplement adverse event signals from Twitter
OBJECTIVE: The objective of this study is to develop a deep learning pipeline to detect signals on dietary supplement-related adverse events (DS AEs) from Twitter. MATERIALS AND METHODS: We obtained 247 807 tweets ranging from 2012 to 2018 that mentioned both DS and AE. We designed a tailor-made ann...
Autores principales: | Wang, Yefeng, Zhao, Yunpeng, Schutte, Dalton, Bian, Jiang, Zhang, Rui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8497875/ https://www.ncbi.nlm.nih.gov/pubmed/34632323 http://dx.doi.org/10.1093/jamiaopen/ooab081 |
Ejemplares similares
-
DeepADEMiner: a deep learning pharmacovigilance pipeline for extraction and normalization of adverse drug event mentions on Twitter
por: Magge, Arjun, et al.
Publicado: (2021) -
Detecting associations between dietary supplement intake and sentiments within mental disorder tweets
por: Wang, Yefeng, et al.
Publicado: (2019) -
Mining Adverse Events of Dietary Supplements from Product Labels by Topic Modeling
por: Wang, Yefeng, et al.
Publicado: (2017) -
Adverse drug events and medication relation extraction in electronic health records with ensemble deep learning methods
por: Christopoulou, Fenia, et al.
Publicado: (2019) -
Automatic gender detection in Twitter profiles for health-related cohort studies
por: Yang, Yuan-Chi, et al.
Publicado: (2021)