Cargando…
Interpretable Recognition for Dementia Using Brain Images
Machine learning-based models are widely used for neuroimage-based dementia recognition and achieve great success. However, most models omit the interpretability that is a very important factor regarding the confidence of a model. Takagi–Sugeno–Kang (TSK) fuzzy classifiers as the high interpretabili...
Autores principales: | Song, Xinjian, Gu, Feng, Wang, Xiude, Ma, Songhua, Wang, Li |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8497883/ https://www.ncbi.nlm.nih.gov/pubmed/34630030 http://dx.doi.org/10.3389/fnins.2021.748689 |
Ejemplares similares
-
Evaluation of Feature Selection for Alzheimer’s Disease Diagnosis
por: Gu, Feng, et al.
Publicado: (2022) -
A Transfer Model Based on Supervised Multi-Layer Dictionary Learning for Brain Tumor MRI Image Recognition
por: Gu, Yi, et al.
Publicado: (2021) -
Prediction of conversion to dementia using interpretable machine learning in patients with amnestic mild cognitive impairment
por: Chun, Min Young, et al.
Publicado: (2022) -
A dominant set-informed interpretable fuzzy system for automated diagnosis of dementia
por: Chen, Tianhua, et al.
Publicado: (2022) -
Interpreting functional diffusion tensor imaging
por: Autio, Joonas Arttu, et al.
Publicado: (2014)