Cargando…
An Open-Source Framework for Automated High-Throughput Cell Biology Experiments
Modern data analysis methods, such as optimization algorithms or deep learning have been successfully applied to a number of biotechnological and medical questions. For these methods to be efficient, a large number of high-quality and reproducible experiments needs to be conducted, requiring a high...
Autores principales: | Katunin, Pavel, Zhou, Jianbo, Shehata, Ola M., Peden, Andrew A., Cadby, Ashley, Nikolaev, Anton |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8498207/ https://www.ncbi.nlm.nih.gov/pubmed/34631697 http://dx.doi.org/10.3389/fcell.2021.697584 |
Ejemplares similares
-
ZAF, the first open source fully automated feeder for aquatic facilities
por: Lange, Merlin, et al.
Publicado: (2021) -
PyZebrascope: An Open-Source Platform for Brain-Wide Neural Activity Imaging in Zebrafish
por: Barbara, Rani, et al.
Publicado: (2022) -
N6-Methyladenosine Modification Opens a New Chapter in Circular RNA Biology
por: Wu, Jun, et al.
Publicado: (2021) -
Enabling high‐throughput biology with flexible open‐source automation
por: Chory, Emma J, et al.
Publicado: (2021) -
Editorial: Biophysical target engagement assays in chemical biology and pharmacological research
por: Baljinnyam, Bolormaa, et al.
Publicado: (2023)