Cargando…
Machine learning for brain age prediction: Introduction to methods and clinical applications
The rise of machine learning has unlocked new ways of analysing structural neuroimaging data, including brain age prediction. In this state-of-the-art review, we provide an introduction to the methods and potential clinical applications of brain age prediction. Studies on brain age typically involve...
Autores principales: | Baecker, Lea, Garcia-Dias, Rafael, Vieira, Sandra, Scarpazza, Cristina, Mechelli, Andrea |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8498228/ https://www.ncbi.nlm.nih.gov/pubmed/34614461 http://dx.doi.org/10.1016/j.ebiom.2021.103600 |
Ejemplares similares
-
Brain age prediction: A comparison between machine learning models using region‐ and voxel‐based morphometric data
por: Baecker, Lea, et al.
Publicado: (2021) -
Translating research findings into clinical practice: a systematic and critical review of neuroimaging-based clinical tools for brain disorders
por: Scarpazza, C., et al.
Publicado: (2020) -
Using normative modelling to detect disease progression in mild cognitive impairment and Alzheimer’s disease in a cross-sectional multi-cohort study
por: Pinaya, Walter H. L., et al.
Publicado: (2021) -
From models to tools: clinical translation of machine learning studies in psychosis
por: Mechelli, Andrea, et al.
Publicado: (2020) -
Integrating machining learning and multimodal neuroimaging to detect schizophrenia at the level of the individual
por: Lei, Du, et al.
Publicado: (2019)