Cargando…
Machine Learning Guided Design of Single–Phase Hybrid Lead Halide White Phosphors
Designing new single‐phase white phosphors for solid‐state lighting is a challenging trial–error process as it requires to navigate in a multidimensional space (composition of the host matrix/dopants, experimental conditions, etc.). Thus, no single‐phase white phosphor has ever been reported to exhi...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8498859/ https://www.ncbi.nlm.nih.gov/pubmed/34258883 http://dx.doi.org/10.1002/advs.202101407 |
Sumario: | Designing new single‐phase white phosphors for solid‐state lighting is a challenging trial–error process as it requires to navigate in a multidimensional space (composition of the host matrix/dopants, experimental conditions, etc.). Thus, no single‐phase white phosphor has ever been reported to exhibit both a high color rendering index (CRI ‐ degree to which objects appear natural under the white illumination) and a tunable correlated color temperature (CCT). In this article, a novel strategy consisting in iterating syntheses, characterizations, and machine learning (ML) models to design such white phosphors is demonstrated. With the guidance of ML models, a series of luminescent hybrid lead halides with ultra‐high color rendering (above 92) mimicking the light of the sunrise/sunset (CCT = 3200 K), morning/afternoon (CCT = 4200 K), midday (CCT = 5500 K), full sun (CCT = 6500K), as well as an overcast sky (CCT = 7000 K) are precisely designed. |
---|