Cargando…

Wireless Soft Scalp Electronics and Virtual Reality System for Motor Imagery‐Based Brain–Machine Interfaces

Motor imagery offers an excellent opportunity as a stimulus‐free paradigm for brain–machine interfaces. Conventional electroencephalography (EEG) for motor imagery requires a hair cap with multiple wired electrodes and messy gels, causing motion artifacts. Here, a wireless scalp electronic system wi...

Descripción completa

Detalles Bibliográficos
Autores principales: Mahmood, Musa, Kwon, Shinjae, Kim, Hojoong, Kim, Yun‐Soung, Siriaraya, Panote, Choi, Jeongmoon, Otkhmezuri, Boris, Kang, Kyowon, Yu, Ki Jun, Jang, Young C., Ang, Chee Siang, Yeo, Woon‐Hong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8498913/
https://www.ncbi.nlm.nih.gov/pubmed/34272934
http://dx.doi.org/10.1002/advs.202101129
_version_ 1784580272968171520
author Mahmood, Musa
Kwon, Shinjae
Kim, Hojoong
Kim, Yun‐Soung
Siriaraya, Panote
Choi, Jeongmoon
Otkhmezuri, Boris
Kang, Kyowon
Yu, Ki Jun
Jang, Young C.
Ang, Chee Siang
Yeo, Woon‐Hong
author_facet Mahmood, Musa
Kwon, Shinjae
Kim, Hojoong
Kim, Yun‐Soung
Siriaraya, Panote
Choi, Jeongmoon
Otkhmezuri, Boris
Kang, Kyowon
Yu, Ki Jun
Jang, Young C.
Ang, Chee Siang
Yeo, Woon‐Hong
author_sort Mahmood, Musa
collection PubMed
description Motor imagery offers an excellent opportunity as a stimulus‐free paradigm for brain–machine interfaces. Conventional electroencephalography (EEG) for motor imagery requires a hair cap with multiple wired electrodes and messy gels, causing motion artifacts. Here, a wireless scalp electronic system with virtual reality for real‐time, continuous classification of motor imagery brain signals is introduced. This low‐profile, portable system integrates imperceptible microneedle electrodes and soft wireless circuits. Virtual reality addresses subject variance in detectable EEG response to motor imagery by providing clear, consistent visuals and instant biofeedback. The wearable soft system offers advantageous contact surface area and reduced electrode impedance density, resulting in significantly enhanced EEG signals and classification accuracy. The combination with convolutional neural network‐machine learning provides a real‐time, continuous motor imagery‐based brain–machine interface. With four human subjects, the scalp electronic system offers a high classification accuracy (93.22 ± 1.33% for four classes), allowing wireless, real‐time control of a virtual reality game.
format Online
Article
Text
id pubmed-8498913
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-84989132021-10-12 Wireless Soft Scalp Electronics and Virtual Reality System for Motor Imagery‐Based Brain–Machine Interfaces Mahmood, Musa Kwon, Shinjae Kim, Hojoong Kim, Yun‐Soung Siriaraya, Panote Choi, Jeongmoon Otkhmezuri, Boris Kang, Kyowon Yu, Ki Jun Jang, Young C. Ang, Chee Siang Yeo, Woon‐Hong Adv Sci (Weinh) Research Article Motor imagery offers an excellent opportunity as a stimulus‐free paradigm for brain–machine interfaces. Conventional electroencephalography (EEG) for motor imagery requires a hair cap with multiple wired electrodes and messy gels, causing motion artifacts. Here, a wireless scalp electronic system with virtual reality for real‐time, continuous classification of motor imagery brain signals is introduced. This low‐profile, portable system integrates imperceptible microneedle electrodes and soft wireless circuits. Virtual reality addresses subject variance in detectable EEG response to motor imagery by providing clear, consistent visuals and instant biofeedback. The wearable soft system offers advantageous contact surface area and reduced electrode impedance density, resulting in significantly enhanced EEG signals and classification accuracy. The combination with convolutional neural network‐machine learning provides a real‐time, continuous motor imagery‐based brain–machine interface. With four human subjects, the scalp electronic system offers a high classification accuracy (93.22 ± 1.33% for four classes), allowing wireless, real‐time control of a virtual reality game. John Wiley and Sons Inc. 2021-07-17 /pmc/articles/PMC8498913/ /pubmed/34272934 http://dx.doi.org/10.1002/advs.202101129 Text en © 2021 The Authors. Advanced Science published by Wiley‐VCH GmbH https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Mahmood, Musa
Kwon, Shinjae
Kim, Hojoong
Kim, Yun‐Soung
Siriaraya, Panote
Choi, Jeongmoon
Otkhmezuri, Boris
Kang, Kyowon
Yu, Ki Jun
Jang, Young C.
Ang, Chee Siang
Yeo, Woon‐Hong
Wireless Soft Scalp Electronics and Virtual Reality System for Motor Imagery‐Based Brain–Machine Interfaces
title Wireless Soft Scalp Electronics and Virtual Reality System for Motor Imagery‐Based Brain–Machine Interfaces
title_full Wireless Soft Scalp Electronics and Virtual Reality System for Motor Imagery‐Based Brain–Machine Interfaces
title_fullStr Wireless Soft Scalp Electronics and Virtual Reality System for Motor Imagery‐Based Brain–Machine Interfaces
title_full_unstemmed Wireless Soft Scalp Electronics and Virtual Reality System for Motor Imagery‐Based Brain–Machine Interfaces
title_short Wireless Soft Scalp Electronics and Virtual Reality System for Motor Imagery‐Based Brain–Machine Interfaces
title_sort wireless soft scalp electronics and virtual reality system for motor imagery‐based brain–machine interfaces
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8498913/
https://www.ncbi.nlm.nih.gov/pubmed/34272934
http://dx.doi.org/10.1002/advs.202101129
work_keys_str_mv AT mahmoodmusa wirelesssoftscalpelectronicsandvirtualrealitysystemformotorimagerybasedbrainmachineinterfaces
AT kwonshinjae wirelesssoftscalpelectronicsandvirtualrealitysystemformotorimagerybasedbrainmachineinterfaces
AT kimhojoong wirelesssoftscalpelectronicsandvirtualrealitysystemformotorimagerybasedbrainmachineinterfaces
AT kimyunsoung wirelesssoftscalpelectronicsandvirtualrealitysystemformotorimagerybasedbrainmachineinterfaces
AT siriarayapanote wirelesssoftscalpelectronicsandvirtualrealitysystemformotorimagerybasedbrainmachineinterfaces
AT choijeongmoon wirelesssoftscalpelectronicsandvirtualrealitysystemformotorimagerybasedbrainmachineinterfaces
AT otkhmezuriboris wirelesssoftscalpelectronicsandvirtualrealitysystemformotorimagerybasedbrainmachineinterfaces
AT kangkyowon wirelesssoftscalpelectronicsandvirtualrealitysystemformotorimagerybasedbrainmachineinterfaces
AT yukijun wirelesssoftscalpelectronicsandvirtualrealitysystemformotorimagerybasedbrainmachineinterfaces
AT jangyoungc wirelesssoftscalpelectronicsandvirtualrealitysystemformotorimagerybasedbrainmachineinterfaces
AT angcheesiang wirelesssoftscalpelectronicsandvirtualrealitysystemformotorimagerybasedbrainmachineinterfaces
AT yeowoonhong wirelesssoftscalpelectronicsandvirtualrealitysystemformotorimagerybasedbrainmachineinterfaces