Cargando…

Upregulated miR-200c is associated with downregulation of the functional receptor for severe acute respiratory syndrome coronavirus 2 ACE2 in individuals with obesity

Obesity is a risk factor for coronavirus disease 2019 (COVID-19) infection, with studies demonstrating the prevalence of individuals with obesity admitted with COVID-19 ranging between 30 and 60%. We determined whether early changes in microRNAs (miRNAs) are associated with dysregulation of angioten...

Descripción completa

Detalles Bibliográficos
Autores principales: Bellae Papannarao, Jayanthi, Schwenke, Daryl O., Manning, Patrick, Katare, Rajesh
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8499608/
https://www.ncbi.nlm.nih.gov/pubmed/34625660
http://dx.doi.org/10.1038/s41366-021-00984-2
Descripción
Sumario:Obesity is a risk factor for coronavirus disease 2019 (COVID-19) infection, with studies demonstrating the prevalence of individuals with obesity admitted with COVID-19 ranging between 30 and 60%. We determined whether early changes in microRNAs (miRNAs) are associated with dysregulation of angiotensin-converting enzyme 2 (ACE2), the specific functional receptor for severe acute respiratory syndrome coronavirus 2. ACE2 is a membrane-bound enzyme that catalyzes the conversion of angiotensin II to angiotensin 1–7 the latter having cardioprotective and vasorelaxation effects. Quantitative real-time PCR analysis of plasma samples for circulating miRNAs showed upregulation of miR-200c and miR-let-7b in otherwise healthy individuals with obesity. This was associated with significant downregulation of ACE2, a direct target for both miRNAs, in individuals with obesity. Correlation analysis confirmed a significant negative correlation between ACE2 and both the miRNAs. Studies showed that despite being the functional receptor, inhibition/downregulation of ACE2 did not reduce the severity of COVID-19 infection. In contrast, increased angiotensin II following inhibition of ACE2 may increase the severity of the disease. Taken together, our novel results identify that upregulation of miR-200c may increase the susceptibility of individuals with obesity to COVID-19. Considering miRNA are the earliest molecular regulators, the level of circulating miR-200c could be a potential biomarker in the early identification of those at the risk of severe COVID-19.