Cargando…
Deep significance clustering: a novel approach for identifying risk-stratified and predictive patient subgroups
OBJECTIVE: Deep significance clustering (DICE) is a self-supervised learning framework. DICE identifies clinically similar and risk-stratified subgroups that neither unsupervised clustering algorithms nor supervised risk prediction algorithms alone are guaranteed to generate. MATERIALS AND METHODS:...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8500061/ https://www.ncbi.nlm.nih.gov/pubmed/34571540 http://dx.doi.org/10.1093/jamia/ocab203 |