Cargando…
Deep significance clustering: a novel approach for identifying risk-stratified and predictive patient subgroups
OBJECTIVE: Deep significance clustering (DICE) is a self-supervised learning framework. DICE identifies clinically similar and risk-stratified subgroups that neither unsupervised clustering algorithms nor supervised risk prediction algorithms alone are guaranteed to generate. MATERIALS AND METHODS:...
Autores principales: | Huang, Yufang, Liu, Yifan, Steel, Peter A D, Axsom, Kelly M, Lee, John R, Tummalapalli, Sri Lekha, Wang, Fei, Pathak, Jyotishman, Subramanian, Lakshminarayanan, Zhang, Yiye |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8500061/ https://www.ncbi.nlm.nih.gov/pubmed/34571540 http://dx.doi.org/10.1093/jamia/ocab203 |
Ejemplares similares
-
Using electronic health records for population health sciences: a case study to evaluate the associations between changes in left ventricular ejection fraction and the built environment
por: Zhang, Yiye, et al.
Publicado: (2020) -
Alternative Payment Models and Opportunities to Address Disparities in Kidney Disease
por: Tummalapalli, Sri Lekha, et al.
Publicado: (2020) -
Influenza Vaccines in Maintenance Hemodialysis Patients: Does Seroresponse Vary With Different Vaccine Formulations?
por: Barbar, Tarek, et al.
Publicado: (2022) -
Understanding the research landscape of major depressive disorder via literature mining: an entity-level analysis of PubMed data from 1948 to 2017
por: Zhu, Yongjun, et al.
Publicado: (2018) -
The COVID-19 Pandemic Converges With Kidney Policy Transformation: Implications for CKD Population Health
por: Tummalapalli, Sri Lekha, et al.
Publicado: (2021)