Cargando…
Comparative analysis of machine learning-based approaches for identifying therapeutic peptides targeting SARS-CoV-2
Coronavirus disease 2019 (COVID-19) has impacted public health as well as societal and economic well-being. In the last two decades, various prediction algorithms and tools have been developed for predicting antiviral peptides (AVPs). The current COVID-19 pandemic has underscored the need to develop...
Autores principales: | Manavalan, Balachandran, Basith, Shaherin, Lee, Gwang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8500067/ https://www.ncbi.nlm.nih.gov/pubmed/34595489 http://dx.doi.org/10.1093/bib/bbab412 |
Ejemplares similares
-
MLACP: machine-learning-based prediction of anticancer peptides
por: Manavalan, Balachandran, et al.
Publicado: (2017) -
STALLION: a stacking-based ensemble learning framework for prokaryotic lysine acetylation site prediction
por: Basith, Shaherin, et al.
Publicado: (2021) -
SDM6A: A Web-Based Integrative Machine-Learning Framework for Predicting 6mA Sites in the Rice Genome
por: Basith, Shaherin, et al.
Publicado: (2019) -
A Molecular Dynamics Approach to Explore the Intramolecular Signal Transduction of PPAR-α
por: Basith, Shaherin, et al.
Publicado: (2019) -
AtbPpred: A Robust Sequence-Based Prediction of Anti-Tubercular Peptides Using Extremely Randomized Trees
por: Manavalan, Balachandran, et al.
Publicado: (2019)