Cargando…

Integrative growth physiology and transcriptome profiling of probiotic Limosilactobacillus reuteri KUB-AC5

Limosilactobacillus reuteri KUB-AC5 has been widely used as probiotic in chicken for Salmonella reduction. However, a preferable carbon source and growth phase is poorly characterized underlying metabolic responses on growth and inhibition effects of L. reuteri KUB-AC5. This study therefore aimed to...

Descripción completa

Detalles Bibliográficos
Autores principales: Jatuponwiphat, Theeraphol, Namrak, Thanawat, Nitisinprasert, Sunee, Nakphaichit, Massalin, Vongsangnak, Wanwipa
Formato: Online Artículo Texto
Lenguaje:English
Publicado: PeerJ Inc. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8500091/
https://www.ncbi.nlm.nih.gov/pubmed/34707932
http://dx.doi.org/10.7717/peerj.12226
Descripción
Sumario:Limosilactobacillus reuteri KUB-AC5 has been widely used as probiotic in chicken for Salmonella reduction. However, a preferable carbon source and growth phase is poorly characterized underlying metabolic responses on growth and inhibition effects of L. reuteri KUB-AC5. This study therefore aimed to investigate transcriptome profiling of L. reuteri KUB-AC5 revealing global metabolic responses when alteration of carbon sources and growth phases. Interestingly, L. reuteri KUB-AC5 grown under sucrose culture showed to be the best for fast growth and inhibition effects against Salmonella Enteritidis S003 growth. Towards the transcriptome profiling and reporter proteins/metabolites analysis, the results showed that amino acid transport via ABC systems as well as sucrose metabolism and transport are key metabolic responses at Logarithmic (L)-phase of L. reuteri KUB-AC5 growth. Considering the Stationary (S)-phase, we found the potential reporter proteins/metabolites involved in carbohydrate metabolism e.g., levansucrase and levan. Promisingly, levansucrase and levan were revealed to be candidates in relation to inhibition effects of L. reuteri KUB-AC5. Throughout this study, L. reuteri KUB-AC5 had a metabolic control in acclimatization to sucrose and energy pools through transcriptional co-regulation, which supported the cell growth and inhibition potentials. This study offers a perspective in optimizing fermentation condition through either genetic or physiological approaches for enhancing probiotic L. reuteri KUB-AC5 properties.