Cargando…
Enhancing reasoning through reduction of vagueness using fuzzy OWL-2 for representation of breast cancer ontologies
The need to address the challenge of vagueness across several domains of applicability of ontology is gaining research attention. The presence of vagueness in knowledge represented with description logic impairs automating reasoning and inference making. The importance of reducing this vagueness in...
Autores principales: | Oyelade, Olaide N., Ezugwu, Absalom E., Adewuyi, Sunday A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer London
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8500271/ https://www.ncbi.nlm.nih.gov/pubmed/34642549 http://dx.doi.org/10.1007/s00521-021-06517-2 |
Ejemplares similares
-
A case-based reasoning framework for early detection and diagnosis of novel coronavirus
por: Oyelade, Olaide N., et al.
Publicado: (2020) -
Immunity-based Ebola optimization search algorithm for minimization of feature extraction with reduction in digital mammography using CNN models
por: Oyelade, Olaide N., et al.
Publicado: (2022) -
A bioinspired neural architecture search based convolutional neural network for breast cancer detection using histopathology images
por: Oyelade, Olaide N., et al.
Publicado: (2021) -
A novel wavelet decomposition and transformation convolutional neural network with data augmentation for breast cancer detection using digital mammogram
por: Oyelade, Olaide N., et al.
Publicado: (2022) -
Evolutionary binary feature selection using adaptive ebola optimization search algorithm for high-dimensional datasets
por: Oyelade, Olaide N., et al.
Publicado: (2023)