Cargando…
A self-degradable hydrogel sensor for a nerve agent tabun surrogate through a self-propagating cascade
Nerve agents that irreversibly deactivate the enzyme acetylcholinesterase are extremely toxic weapons of mass destruction. Thus, developing methods to detect these lethal agents is important. To create an optical sensor for a surrogate of the nerve agent tabun, as well as a physical barrier that dis...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8500376/ https://www.ncbi.nlm.nih.gov/pubmed/34632430 http://dx.doi.org/10.1016/j.xcrp.2021.100552 |
_version_ | 1784580431863087104 |
---|---|
author | Lee, Doo-Hee Valenzuela, Stephanie A. Dominguez, Manuel N. Otsuka, Mai Milliron, Delia J. Anslyn, Eric V. |
author_facet | Lee, Doo-Hee Valenzuela, Stephanie A. Dominguez, Manuel N. Otsuka, Mai Milliron, Delia J. Anslyn, Eric V. |
author_sort | Lee, Doo-Hee |
collection | PubMed |
description | Nerve agents that irreversibly deactivate the enzyme acetylcholinesterase are extremely toxic weapons of mass destruction. Thus, developing methods to detect these lethal agents is important. To create an optical sensor for a surrogate of the nerve agent tabun, as well as a physical barrier that dissolves in response to this analyte, we devise a network hydrogel that decomposes via a self-propagating cascade. A Meldrums acid-derived linker is incorporated into a hydrogel that undergoes a declick reaction in response to thiols, thereby breaking network connections, which releases more thiols, propagating the response throughout the gel. A combination of chemical reactions triggered by the addition of the tabun mimic initiates the cascade. The dissolving barrier is used to release dyes, as well as nanocrystals that undergo a spontaneous aggregation. Thus, this sensing system for tabun generates a physical response and the delivery of chemical agents in response to an initial trigger. |
format | Online Article Text |
id | pubmed-8500376 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
record_format | MEDLINE/PubMed |
spelling | pubmed-85003762021-10-08 A self-degradable hydrogel sensor for a nerve agent tabun surrogate through a self-propagating cascade Lee, Doo-Hee Valenzuela, Stephanie A. Dominguez, Manuel N. Otsuka, Mai Milliron, Delia J. Anslyn, Eric V. Cell Rep Phys Sci Article Nerve agents that irreversibly deactivate the enzyme acetylcholinesterase are extremely toxic weapons of mass destruction. Thus, developing methods to detect these lethal agents is important. To create an optical sensor for a surrogate of the nerve agent tabun, as well as a physical barrier that dissolves in response to this analyte, we devise a network hydrogel that decomposes via a self-propagating cascade. A Meldrums acid-derived linker is incorporated into a hydrogel that undergoes a declick reaction in response to thiols, thereby breaking network connections, which releases more thiols, propagating the response throughout the gel. A combination of chemical reactions triggered by the addition of the tabun mimic initiates the cascade. The dissolving barrier is used to release dyes, as well as nanocrystals that undergo a spontaneous aggregation. Thus, this sensing system for tabun generates a physical response and the delivery of chemical agents in response to an initial trigger. 2021-08-25 2021-09-22 /pmc/articles/PMC8500376/ /pubmed/34632430 http://dx.doi.org/10.1016/j.xcrp.2021.100552 Text en https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) ). |
spellingShingle | Article Lee, Doo-Hee Valenzuela, Stephanie A. Dominguez, Manuel N. Otsuka, Mai Milliron, Delia J. Anslyn, Eric V. A self-degradable hydrogel sensor for a nerve agent tabun surrogate through a self-propagating cascade |
title | A self-degradable hydrogel sensor for a nerve agent tabun surrogate through a self-propagating cascade |
title_full | A self-degradable hydrogel sensor for a nerve agent tabun surrogate through a self-propagating cascade |
title_fullStr | A self-degradable hydrogel sensor for a nerve agent tabun surrogate through a self-propagating cascade |
title_full_unstemmed | A self-degradable hydrogel sensor for a nerve agent tabun surrogate through a self-propagating cascade |
title_short | A self-degradable hydrogel sensor for a nerve agent tabun surrogate through a self-propagating cascade |
title_sort | self-degradable hydrogel sensor for a nerve agent tabun surrogate through a self-propagating cascade |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8500376/ https://www.ncbi.nlm.nih.gov/pubmed/34632430 http://dx.doi.org/10.1016/j.xcrp.2021.100552 |
work_keys_str_mv | AT leedoohee aselfdegradablehydrogelsensorforanerveagenttabunsurrogatethroughaselfpropagatingcascade AT valenzuelastephaniea aselfdegradablehydrogelsensorforanerveagenttabunsurrogatethroughaselfpropagatingcascade AT dominguezmanueln aselfdegradablehydrogelsensorforanerveagenttabunsurrogatethroughaselfpropagatingcascade AT otsukamai aselfdegradablehydrogelsensorforanerveagenttabunsurrogatethroughaselfpropagatingcascade AT millirondeliaj aselfdegradablehydrogelsensorforanerveagenttabunsurrogatethroughaselfpropagatingcascade AT anslynericv aselfdegradablehydrogelsensorforanerveagenttabunsurrogatethroughaselfpropagatingcascade AT leedoohee selfdegradablehydrogelsensorforanerveagenttabunsurrogatethroughaselfpropagatingcascade AT valenzuelastephaniea selfdegradablehydrogelsensorforanerveagenttabunsurrogatethroughaselfpropagatingcascade AT dominguezmanueln selfdegradablehydrogelsensorforanerveagenttabunsurrogatethroughaselfpropagatingcascade AT otsukamai selfdegradablehydrogelsensorforanerveagenttabunsurrogatethroughaselfpropagatingcascade AT millirondeliaj selfdegradablehydrogelsensorforanerveagenttabunsurrogatethroughaselfpropagatingcascade AT anslynericv selfdegradablehydrogelsensorforanerveagenttabunsurrogatethroughaselfpropagatingcascade |