Cargando…
HybridCTrm: Bridging CNN and Transformer for Multimodal Brain Image Segmentation
Multimodal medical image segmentation is always a critical problem in medical image segmentation. Traditional deep learning methods utilize fully CNNs for encoding given images, thus leading to deficiency of long-range dependencies and bad generalization performance. Recently, a sequence of Transfor...
Autores principales: | Sun, Qixuan, Fang, Nianhua, Liu, Zhuo, Zhao, Liang, Wen, Youpeng, Lin, Hongxiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8500745/ https://www.ncbi.nlm.nih.gov/pubmed/34630994 http://dx.doi.org/10.1155/2021/7467261 |
Ejemplares similares
-
Hybrid Deep Feature Fusion of 2D CNN and 3D CNN for Vestibule Segmentation from CT Images
por: Zhang, Ruicong, et al.
Publicado: (2022) -
TranSegNet: Hybrid CNN-Vision Transformers Encoder for Retina Segmentation of Optical Coherence Tomography
por: Zhang, Yiheng, et al.
Publicado: (2023) -
Meningioma brain tumor detection and classification using hybrid CNN method and RIDGELET transform
por: Prakash, B. V., et al.
Publicado: (2023) -
CNN-Res: deep learning framework for segmentation of acute ischemic stroke lesions on multimodal MRI images
por: Gheibi, Yousef, et al.
Publicado: (2023) -
Lithium Metal Battery Quality Control via Transformer–CNN Segmentation
por: Quenum, Jerome, et al.
Publicado: (2023)