Cargando…

Follow-up study of pulmonary sequelae in discharged COVID-19 patients with diabetes or secondary hyperglycemia

PURPOSE: To determine chest CT changes 6 months and 12 months after the onset of coronavirus disease 2019 (COVID-19) in patients with diabetes or hyperglycemia and the risk factors for these residual lung abnormalities. METHODS: In total, 141 COVID-19 patients were assigned to group 1 (diabetes), gr...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Yumin, Han, Xiaoyu, Huang, Jing, Alwalid, Osamah, Jia, Xi, Yuan, Mei, Cao, Yukun, Shao, Guozhu, Cui, Yue, Liu, Jia, Fan, Yangqing, Xu, Xiangyang, Shi, Heshui
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Published by Elsevier B.V. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8500791/
https://www.ncbi.nlm.nih.gov/pubmed/34634534
http://dx.doi.org/10.1016/j.ejrad.2021.109997
Descripción
Sumario:PURPOSE: To determine chest CT changes 6 months and 12 months after the onset of coronavirus disease 2019 (COVID-19) in patients with diabetes or hyperglycemia and the risk factors for these residual lung abnormalities. METHODS: In total, 141 COVID-19 patients were assigned to group 1 (diabetes), group 2 (secondary hyperglycemia) or group 3 (controls). Initial and six- and twelve-month follow-up computed tomography (CT) scans were performed 16 days, 175 days and 351 days after symptom onset, respectively. CT findings and clinical and peak laboratory parameters were collected and compared. Univariable and multivariable logistic regression analyses were performed to identify the independent predictors for the presence of residual lung abnormalities at the 6-month follow-up exam. Seven variables (age; the presence of acute respiratory distress syndrome; the duration of hospitalization; the peak levels of lactate dehydrogenase (LDH) and C-reactive protein; and the initial total CT score) were chosen in the final multivariable models. RESULTS: At the six-month follow-up, abnormalities were still observed on chest CT in 77/141 (54.6%) patients. Reticular patterns (40/141, 28.4%) and ground-glass opacities (GGOs) (29/141, 20.6%) were the most common CT abnormalities on the follow-up CT scans. Patients in Groups 1 and 2 had significantly higher incidences of residual lung abnormalities than those in Group 3 (65.4% and 58.3%, respectively vs. 36.6%; p < 0.05). Twelve months after disease onset, the chest CT changes persisted in 13/25 (52.0%) patients. A duration of hospitalization > 20 days (OR: 5.630, 95% CI: 1.394–22.744, p = 0.015), an LDH level ≥ 317 U/L (OR: 7.020, 95% CI: 1.032–47.743, p = 0.046) and a total CT score > 15 (OR: 9.919, 95% CI: 1.378–71.415, p = 0.023) were independent predictors of residual pulmonary abnormalities in patients with diabetes or secondary hyperglycemia. CONCLUSIONS: A considerable proportion of surviving COVID-19 patients with diabetes or secondary hyperglycemia had residual pulmonary abnormalities six months after disease onset, and we found evidence of persistent chest CT changes at the one-year follow-up. Residual lung abnormalities were associated with longer hospital stays, higher peak LDH levels and higher initial total CT scores.