Cargando…
Pacing profiles and tactical behaviors of elite runners
The pacing behaviors used by elite athletes differ among individual sports, necessitating the study of sport-specific pacing profiles. Additionally, pacing behaviors adopted by elite runners differ depending on race distance. An “all-out” strategy, characterized by initial rapid acceleration and red...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Shanghai University of Sport
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8500812/ https://www.ncbi.nlm.nih.gov/pubmed/32599344 http://dx.doi.org/10.1016/j.jshs.2020.06.011 |
_version_ | 1784580522714857472 |
---|---|
author | Casado, Arturo Hanley, Brian Jiménez-Reyes, Pedro Renfree, Andrew |
author_facet | Casado, Arturo Hanley, Brian Jiménez-Reyes, Pedro Renfree, Andrew |
author_sort | Casado, Arturo |
collection | PubMed |
description | The pacing behaviors used by elite athletes differ among individual sports, necessitating the study of sport-specific pacing profiles. Additionally, pacing behaviors adopted by elite runners differ depending on race distance. An “all-out” strategy, characterized by initial rapid acceleration and reduction in speed in the later stages, is observed during 100 m and 200 m events; 400 m runners also display positive pacing patterns, which is characterized by a reduction in speed throughout the race. Similarly, 800 m runners typically adopt a positive pacing strategy during paced “meet” races. However, during championship races, depending on the tactical approaches used by dominant athletes, pacing can be either positive or negative (characterized by an increase in speed throughout). A U-shaped pacing strategy (characterized by a faster start and end than during the middle part of the race) is evident during world record performances at meet races in 1500 m, 5000 m, and 10,000 m events. Although a parabolic J-shaped pacing profile (in which the start is faster than the middle part of the race but is slower than the endspurt) can be observed during championship 1500 m races, a negative pacing strategy with microvariations of pace is adopted by 5000 m and 10,000 m runners in championship races. Major cross country and marathon championship races are characterized by a positive pacing strategy; whereas a U-shaped pacing strategy, which is the result of a fast endspurt, is adopted by 3000 m steeplechasers and half marathoners. In contrast, recent world record marathon performances have been characterized by even pacing, which emphasizes the differences between championship and meet races at distances longer than 800 m. Studies reviewed suggest further recommendations for athletes. Throughout the whole race, 800 m runners should avoid running wide on the bends. In turn, during major championship events, 1500 m, 5000 m, and 10,000 m runners should try to run close to the inside of the track as much as possible during the decisive stages of the race when the speed is high. Staying within the leading positions during the last lap is recommended to optimize finishing position during 1500 m and 5000 m major championship races. Athletes with more modest aims than winning a medal at major championships are advised to adopt a realistic pace during the initial stages of long-distance races and stay within a pack of runners. Coaches of elite athletes should take into account the observed difference in pacing profiles adopted in meet races vs. those used in championship races: fast times achieved during races with the help of one or more pacemakers are not necessarily replicated in winner-takes-all championship races, where pace varies substantially. Although existing studies examining pacing characteristics in elite runners through an observational approach provide highly ecologically valid performance data, they provide little information regarding the underpinning mechanisms that explain the behaviors shown. Therefore, further research is needed in order to make a meaningful impact on the discipline. Researchers should design and conduct interventions that enable athletes to carefully choose strategies that are not influenced by poor decisions made by other competitors, allowing these athletes to develop more optimal and successful behaviors. |
format | Online Article Text |
id | pubmed-8500812 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Shanghai University of Sport |
record_format | MEDLINE/PubMed |
spelling | pubmed-85008122021-10-14 Pacing profiles and tactical behaviors of elite runners Casado, Arturo Hanley, Brian Jiménez-Reyes, Pedro Renfree, Andrew J Sport Health Sci Review The pacing behaviors used by elite athletes differ among individual sports, necessitating the study of sport-specific pacing profiles. Additionally, pacing behaviors adopted by elite runners differ depending on race distance. An “all-out” strategy, characterized by initial rapid acceleration and reduction in speed in the later stages, is observed during 100 m and 200 m events; 400 m runners also display positive pacing patterns, which is characterized by a reduction in speed throughout the race. Similarly, 800 m runners typically adopt a positive pacing strategy during paced “meet” races. However, during championship races, depending on the tactical approaches used by dominant athletes, pacing can be either positive or negative (characterized by an increase in speed throughout). A U-shaped pacing strategy (characterized by a faster start and end than during the middle part of the race) is evident during world record performances at meet races in 1500 m, 5000 m, and 10,000 m events. Although a parabolic J-shaped pacing profile (in which the start is faster than the middle part of the race but is slower than the endspurt) can be observed during championship 1500 m races, a negative pacing strategy with microvariations of pace is adopted by 5000 m and 10,000 m runners in championship races. Major cross country and marathon championship races are characterized by a positive pacing strategy; whereas a U-shaped pacing strategy, which is the result of a fast endspurt, is adopted by 3000 m steeplechasers and half marathoners. In contrast, recent world record marathon performances have been characterized by even pacing, which emphasizes the differences between championship and meet races at distances longer than 800 m. Studies reviewed suggest further recommendations for athletes. Throughout the whole race, 800 m runners should avoid running wide on the bends. In turn, during major championship events, 1500 m, 5000 m, and 10,000 m runners should try to run close to the inside of the track as much as possible during the decisive stages of the race when the speed is high. Staying within the leading positions during the last lap is recommended to optimize finishing position during 1500 m and 5000 m major championship races. Athletes with more modest aims than winning a medal at major championships are advised to adopt a realistic pace during the initial stages of long-distance races and stay within a pack of runners. Coaches of elite athletes should take into account the observed difference in pacing profiles adopted in meet races vs. those used in championship races: fast times achieved during races with the help of one or more pacemakers are not necessarily replicated in winner-takes-all championship races, where pace varies substantially. Although existing studies examining pacing characteristics in elite runners through an observational approach provide highly ecologically valid performance data, they provide little information regarding the underpinning mechanisms that explain the behaviors shown. Therefore, further research is needed in order to make a meaningful impact on the discipline. Researchers should design and conduct interventions that enable athletes to carefully choose strategies that are not influenced by poor decisions made by other competitors, allowing these athletes to develop more optimal and successful behaviors. Shanghai University of Sport 2021-09 2020-06-26 /pmc/articles/PMC8500812/ /pubmed/32599344 http://dx.doi.org/10.1016/j.jshs.2020.06.011 Text en © 2021 Published by Elsevier B.V. on behalf of Shanghai University of Sport. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Review Casado, Arturo Hanley, Brian Jiménez-Reyes, Pedro Renfree, Andrew Pacing profiles and tactical behaviors of elite runners |
title | Pacing profiles and tactical behaviors of elite runners |
title_full | Pacing profiles and tactical behaviors of elite runners |
title_fullStr | Pacing profiles and tactical behaviors of elite runners |
title_full_unstemmed | Pacing profiles and tactical behaviors of elite runners |
title_short | Pacing profiles and tactical behaviors of elite runners |
title_sort | pacing profiles and tactical behaviors of elite runners |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8500812/ https://www.ncbi.nlm.nih.gov/pubmed/32599344 http://dx.doi.org/10.1016/j.jshs.2020.06.011 |
work_keys_str_mv | AT casadoarturo pacingprofilesandtacticalbehaviorsofeliterunners AT hanleybrian pacingprofilesandtacticalbehaviorsofeliterunners AT jimenezreyespedro pacingprofilesandtacticalbehaviorsofeliterunners AT renfreeandrew pacingprofilesandtacticalbehaviorsofeliterunners |