Cargando…

CCAT1/FABP5 promotes tumour progression through mediating fatty acid metabolism and stabilizing PI3K/AKT/mTOR signalling in lung adenocarcinoma

Long non‐coding RNA (lncRNA) colon cancer associated transcript 1 (CCAT1) has been identified as an oncogene in many cancers, but its role in lung adenocarcinoma (LUAD) remains to be further investigated. We identified the upregulation of CCAT1 in LUAD tissues and LUAD cells. Through RNA pull‐down a...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Jing, Alduais, Yaser, Zhang, Kai, Zhu, Xiaoli, Chen, Baoan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8500980/
https://www.ncbi.nlm.nih.gov/pubmed/34431227
http://dx.doi.org/10.1111/jcmm.16815
Descripción
Sumario:Long non‐coding RNA (lncRNA) colon cancer associated transcript 1 (CCAT1) has been identified as an oncogene in many cancers, but its role in lung adenocarcinoma (LUAD) remains to be further investigated. We identified the upregulation of CCAT1 in LUAD tissues and LUAD cells. Through RNA pull‐down and mass spectrometry analysis, we obtained the interacting proteins with CCAT1 and discovered their functional relation with ‘signal transduction’, ‘energy pathways’ and ‘metabolism’ and revealed the potential of CCAT1 on fatty acid (FA) metabolism. For mechanism exploration, we uncovered the mediation of CCAT1 on the translocation of fatty acid binding protein 5 (FABP5) into nucleus by confirming their interaction and localization. Also, CCAT1 was discovered to promote the formation of the transcription complex by RXR and PPARγ so as to activate the transcription of CD36, PDK1 and VEGFA. Moreover, we found that CCAT1 regulated the activity of AKT by promoting the ubiquitination of FKBP51 through binding with USP49. Subsequently, cell function assays revealed the enhancement of CCAT1 on LUAD cell proliferation and angiogenesis in vitro and in vivo. Collectively, CCAT1 regulated cell proliferation and angiogenesis through regulating FA metabolism in LUAD, providing a novel target for LUAD treatment.