Cargando…
4.2 K sensitivity-tunable radio frequency reflectometry of a physically defined p-channel silicon quantum dot
We demonstrate the measurement of p-channel silicon-on-insulator quantum dots at liquid helium temperatures by using a radio frequency (rf) reflectometry circuit comprising of two independently tunable GaAs varactors. This arrangement allows observing Coulomb diamonds at 4.2 K under nearly best matc...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8501031/ https://www.ncbi.nlm.nih.gov/pubmed/34625617 http://dx.doi.org/10.1038/s41598-021-99560-x |
Sumario: | We demonstrate the measurement of p-channel silicon-on-insulator quantum dots at liquid helium temperatures by using a radio frequency (rf) reflectometry circuit comprising of two independently tunable GaAs varactors. This arrangement allows observing Coulomb diamonds at 4.2 K under nearly best matching condition and optimal signal-to-noise ratio. We also discuss the rf leakage induced by the presence of the large top gate in MOS nanostructures and its consequence on the efficiency of rf-reflectometry. These results open the way to fast and sensitive readout in multi-gate architectures, including multi qubit platforms. |
---|