Cargando…
Annotation-efficient deep learning for automatic medical image segmentation
Automatic medical image segmentation plays a critical role in scientific research and medical care. Existing high-performance deep learning methods typically rely on large training datasets with high-quality manual annotations, which are difficult to obtain in many clinical applications. Here, we in...
Autores principales: | Wang, Shanshan, Li, Cheng, Wang, Rongpin, Liu, Zaiyi, Wang, Meiyun, Tan, Hongna, Wu, Yaping, Liu, Xinfeng, Sun, Hui, Yang, Rui, Liu, Xin, Chen, Jie, Zhou, Huihui, Ben Ayed, Ismail, Zheng, Hairong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8501087/ https://www.ncbi.nlm.nih.gov/pubmed/34625565 http://dx.doi.org/10.1038/s41467-021-26216-9 |
Ejemplares similares
-
Automatic glioma segmentation based on adaptive superpixel
por: Wu, Yaping, et al.
Publicado: (2019) -
Automatic brain structure segmentation for (18)F-fluorodeoxyglucose positron emission tomography/magnetic resonance images via deep learning
por: Huang, Zhenxing, et al.
Publicado: (2023) -
Efficient BFCN for Automatic Retinal Vessel Segmentation
por: Jiang, Yun, et al.
Publicado: (2020) -
Corrigendum to “Efficient BFCN for Automatic Retinal Vessel Segmentation”
por: Wang, Falin, et al.
Publicado: (2020) -
Automatic image annotation for fluorescent cell nuclei segmentation
por: Englbrecht, Fabian, et al.
Publicado: (2021)