Cargando…
Interpretation of the adsorption of metals on quartz crystal based-macromolecule via advanced modeling of equilibrium isotherms
In this article, new insights about the metals-porphyrin complexes are proved by analyzing the zinc, nickel and chromium adsorption process over the well-known porphyrin macromolecule. The use of the quartz crystal microbalance (QCM) apparatus allows the control of the complexation systems’ experime...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8501105/ https://www.ncbi.nlm.nih.gov/pubmed/34625608 http://dx.doi.org/10.1038/s41598-021-99465-9 |
_version_ | 1784580583466205184 |
---|---|
author | Aouaini, Fatma Ben Yahia, Mohamed I. Alrebdi, Haifa A. Alothman, Miysoon |
author_facet | Aouaini, Fatma Ben Yahia, Mohamed I. Alrebdi, Haifa A. Alothman, Miysoon |
author_sort | Aouaini, Fatma |
collection | PubMed |
description | In this article, new insights about the metals-porphyrin complexes are proved by analyzing the zinc, nickel and chromium adsorption process over the well-known porphyrin macromolecule. The use of the quartz crystal microbalance (QCM) apparatus allows the control of the complexation systems’ experimental adsorption data operating at four temperatures. The experimental results and the physical models reveal that the zinc and nickel complexation processes are to be examined using the mono layer adsorption model. While, the double layer model describes the interaction between the chromium compound and the porphyrin. Actually, the three metals are shown to be adsorbed by a multi-docking process in the physicochemical description. The endothermic character of the investigated processes is shown through the appropriate data of the principal parameter adsorbent sites’ density. Hence, several porphyrin sites are exclusively stimulated at high temperature. The parameters of van del Waals, depicting the influences of the lateral interactions, explain the nickel isotherms down trend. The chemical bonds are shown to be carried out between the zinc and the porphyrin through the calculated adsorption energies. Considering the thermodynamic study, and referring to the configurational entropy and the free enthalpy, it is to be noted that the disorder peak of the three mechanisms is reached when the equilibrium concentration is equal to the energetic parameters’ values for each system. The nickel enthalpy revealed for high concentration that the adsorbates’ lateral interactions disapproved the nickel chloride adsorption. The free enthalpy trends, that observed two stability states of the chromium compound, confirmed the chromium double layer mechanism. |
format | Online Article Text |
id | pubmed-8501105 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-85011052021-10-12 Interpretation of the adsorption of metals on quartz crystal based-macromolecule via advanced modeling of equilibrium isotherms Aouaini, Fatma Ben Yahia, Mohamed I. Alrebdi, Haifa A. Alothman, Miysoon Sci Rep Article In this article, new insights about the metals-porphyrin complexes are proved by analyzing the zinc, nickel and chromium adsorption process over the well-known porphyrin macromolecule. The use of the quartz crystal microbalance (QCM) apparatus allows the control of the complexation systems’ experimental adsorption data operating at four temperatures. The experimental results and the physical models reveal that the zinc and nickel complexation processes are to be examined using the mono layer adsorption model. While, the double layer model describes the interaction between the chromium compound and the porphyrin. Actually, the three metals are shown to be adsorbed by a multi-docking process in the physicochemical description. The endothermic character of the investigated processes is shown through the appropriate data of the principal parameter adsorbent sites’ density. Hence, several porphyrin sites are exclusively stimulated at high temperature. The parameters of van del Waals, depicting the influences of the lateral interactions, explain the nickel isotherms down trend. The chemical bonds are shown to be carried out between the zinc and the porphyrin through the calculated adsorption energies. Considering the thermodynamic study, and referring to the configurational entropy and the free enthalpy, it is to be noted that the disorder peak of the three mechanisms is reached when the equilibrium concentration is equal to the energetic parameters’ values for each system. The nickel enthalpy revealed for high concentration that the adsorbates’ lateral interactions disapproved the nickel chloride adsorption. The free enthalpy trends, that observed two stability states of the chromium compound, confirmed the chromium double layer mechanism. Nature Publishing Group UK 2021-10-08 /pmc/articles/PMC8501105/ /pubmed/34625608 http://dx.doi.org/10.1038/s41598-021-99465-9 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Aouaini, Fatma Ben Yahia, Mohamed I. Alrebdi, Haifa A. Alothman, Miysoon Interpretation of the adsorption of metals on quartz crystal based-macromolecule via advanced modeling of equilibrium isotherms |
title | Interpretation of the adsorption of metals on quartz crystal based-macromolecule via advanced modeling of equilibrium isotherms |
title_full | Interpretation of the adsorption of metals on quartz crystal based-macromolecule via advanced modeling of equilibrium isotherms |
title_fullStr | Interpretation of the adsorption of metals on quartz crystal based-macromolecule via advanced modeling of equilibrium isotherms |
title_full_unstemmed | Interpretation of the adsorption of metals on quartz crystal based-macromolecule via advanced modeling of equilibrium isotherms |
title_short | Interpretation of the adsorption of metals on quartz crystal based-macromolecule via advanced modeling of equilibrium isotherms |
title_sort | interpretation of the adsorption of metals on quartz crystal based-macromolecule via advanced modeling of equilibrium isotherms |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8501105/ https://www.ncbi.nlm.nih.gov/pubmed/34625608 http://dx.doi.org/10.1038/s41598-021-99465-9 |
work_keys_str_mv | AT aouainifatma interpretationoftheadsorptionofmetalsonquartzcrystalbasedmacromoleculeviaadvancedmodelingofequilibriumisotherms AT benyahiamohamed interpretationoftheadsorptionofmetalsonquartzcrystalbasedmacromoleculeviaadvancedmodelingofequilibriumisotherms AT ialrebdihaifa interpretationoftheadsorptionofmetalsonquartzcrystalbasedmacromoleculeviaadvancedmodelingofequilibriumisotherms AT aalothmanmiysoon interpretationoftheadsorptionofmetalsonquartzcrystalbasedmacromoleculeviaadvancedmodelingofequilibriumisotherms |