Cargando…

Optimization of Metabolic Oligosaccharide Engineering with Ac(4)GalNAlk and Ac(4)GlcNAlk by an Engineered Pyrophosphorylase

[Image: see text] Metabolic oligosaccharide engineering (MOE) has fundamentally contributed to our understanding of protein glycosylation. Efficient MOE reagents are activated into nucleotide-sugars by cellular biosynthetic machineries, introduced into glycoproteins and traceable by bioorthogonal ch...

Descripción completa

Detalles Bibliográficos
Autores principales: Cioce, Anna, Bineva-Todd, Ganka, Agbay, Anthony J., Choi, Junwon, Wood, Thomas M., Debets, Marjoke F., Browne, William M., Douglas, Holly L., Roustan, Chloe, Tastan, Omur Y., Kjaer, Svend, Bush, Jacob T., Bertozzi, Carolyn R., Schumann, Benjamin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2021
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8501146/
https://www.ncbi.nlm.nih.gov/pubmed/33835779
http://dx.doi.org/10.1021/acschembio.1c00034
Descripción
Sumario:[Image: see text] Metabolic oligosaccharide engineering (MOE) has fundamentally contributed to our understanding of protein glycosylation. Efficient MOE reagents are activated into nucleotide-sugars by cellular biosynthetic machineries, introduced into glycoproteins and traceable by bioorthogonal chemistry. Despite their widespread use, the metabolic fate of many MOE reagents is only beginning to be mapped. While metabolic interconnectivity can affect probe specificity, poor uptake by biosynthetic salvage pathways may impact probe sensitivity and trigger side reactions. Here, we use metabolic engineering to turn the weak alkyne-tagged MOE reagents Ac(4)GalNAlk and Ac(4)GlcNAlk into efficient chemical tools to probe protein glycosylation. We find that bypassing a metabolic bottleneck with an engineered version of the pyrophosphorylase AGX1 boosts nucleotide-sugar biosynthesis and increases bioorthogonal cell surface labeling by up to two orders of magnitude. A comparison with known azide-tagged MOE reagents reveals major differences in glycoprotein labeling, substantially expanding the toolbox of chemical glycobiology.