Cargando…
Rat Bone Mesenchymal Stem Cell-Derived Exosomes Loaded with miR-494 Promoting Neurofilament Regeneration and Behavioral Function Recovery after Spinal Cord Injury
Exosomes (Exo) exhibit numerous advantages (e.g., good encapsulation, high targeting efficiency, and easy to penetrate the blood-brain barrier to the central nervous system). Exosomes are recognized as prominent carriers of mRNAs, siRNAs, miRNAs, proteins, and other bioactive molecules. As confirmed...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8501401/ https://www.ncbi.nlm.nih.gov/pubmed/34635862 http://dx.doi.org/10.1155/2021/1634917 |
Sumario: | Exosomes (Exo) exhibit numerous advantages (e.g., good encapsulation, high targeting efficiency, and easy to penetrate the blood-brain barrier to the central nervous system). Exosomes are recognized as prominent carriers of mRNAs, siRNAs, miRNAs, proteins, and other bioactive molecules. As confirmed by existing studies, miR-494 is important to regulate the occurrence, progression, and repair of spinal cord injury (SCI). We constructed miR-494-modified exosomes (Exo-miR-494). As indicated from related research in vitro and vivo, Exo-miR-494 is capable of effectively inhibiting the inflammatory response and neuronal apoptosis in the injured area, as well as upregulating various anti-inflammatory factors and miR-494 to protect neurons. Moreover, it can promote the regeneration of the neurofilament and improve the recovery of behavioral function of SCI rats. |
---|