Cargando…
Sharp loss: a new loss function for radiotherapy dose prediction based on fully convolutional networks
BACKGROUND: Neural-network methods have been widely used for the prediction of dose distributions in radiotherapy. However, the prediction accuracy of existing methods may be degraded by the problem of dose imbalance. In this work, a new loss function is proposed to alleviate the dose imbalance and...
Autores principales: | Bai, Xue, Zhang, Jie, Wang, Binbing, Wang, Shengye, Xiang, Yida, Hou, Qing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8501531/ https://www.ncbi.nlm.nih.gov/pubmed/34627279 http://dx.doi.org/10.1186/s12938-021-00937-w |
Ejemplares similares
-
Comparing of two dimensional and three dimensional fully
convolutional networks for radiotherapy dose prediction in left-sided breast
cancer
por: Bai, Xue, et al.
Publicado: (2021) -
Radiotherapy dose distribution prediction for breast cancer using deformable image registration
por: Bai, Xue, et al.
Publicado: (2020) -
Loss Weightings for Improving Imbalanced Brain Structure Segmentation Using Fully Convolutional Networks
por: Sugino, Takaaki, et al.
Publicado: (2021) -
A shallow convolutional neural network for blind image sharpness
assessment
por: Yu, Shaode, et al.
Publicado: (2017) -
Fully convolutional network-based multi-output model for automatic segmentation of organs at risk in thorax
por: Zhang, Jie, et al.
Publicado: (2021)