Cargando…
Predicting microvascular invasion in hepatocellular carcinoma: a deep learning model validated across hospitals
BACKGROUND: The accuracy of estimating microvascular invasion (MVI) preoperatively in hepatocellular carcinoma (HCC) by clinical observers is low. Most recent studies constructed MVI predictive models utilizing radiological and/or radiomics features extracted from computed tomography (CT) images. Th...
Autores principales: | Liu, Shu-Cheng, Lai, Jesyin, Huang, Jhao-Yu, Cho, Chia-Fong, Lee, Pei Hua, Lu, Min-Hsuan, Yeh, Chun-Chieh, Yu, Jiaxin, Lin, Wei-Ching |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8501676/ https://www.ncbi.nlm.nih.gov/pubmed/34627393 http://dx.doi.org/10.1186/s40644-021-00425-3 |
Ejemplares similares
-
Deep-learning-based analysis of preoperative MRI predicts microvascular invasion and outcome in hepatocellular carcinoma
por: Sun, Bao-Ye, et al.
Publicado: (2022) -
Preoperative identification of microvascular invasion in hepatocellular carcinoma by XGBoost and deep learning
por: Jiang, Yi-Quan, et al.
Publicado: (2020) -
Radiomics for the Preoperative Evaluation of Microvascular Invasion in Hepatocellular Carcinoma: A Meta-Analysis
por: Li, Liujun, et al.
Publicado: (2022) -
A Scoring System for Predicting Microvascular Invasion in Hepatocellular Carcinoma Based on Quantitative Functional MRI
por: Liao, Chien-Chang, et al.
Publicado: (2022) -
Deep Learning of Liver Contrast-Enhanced Ultrasound to Predict Microvascular Invasion and Prognosis in Hepatocellular Carcinoma
por: Zhang, Yafang, et al.
Publicado: (2022)