Cargando…
Machine learning-based prediction model for responses of bDMARDs in patients with rheumatoid arthritis and ankylosing spondylitis
BACKGROUND: Few studies on rheumatoid arthritis (RA) have generated machine learning models to predict biologic disease-modifying antirheumatic drugs (bDMARDs) responses; however, these studies included insufficient analysis on important features. Moreover, machine learning is yet to be used to pred...
Autores principales: | Lee, Seulkee, Kang, Seonyoung, Eun, Yeonghee, Won, Hong-Hee, Kim, Hyungjin, Lee, Jaejoon, Koh, Eun-Mi, Cha, Hoon-Suk |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8501710/ https://www.ncbi.nlm.nih.gov/pubmed/34627335 http://dx.doi.org/10.1186/s13075-021-02635-3 |
Ejemplares similares
-
Machine learning to predict early TNF inhibitor users in patients with ankylosing spondylitis
por: Lee, Seulkee, et al.
Publicado: (2020) -
Increased risk of malignancy in patients with Takayasu’s arteritis: a population-based cohort study in Korea
por: Lee, Seulkee, et al.
Publicado: (2022) -
Associations between Cardiovascular Outcomes and Rheumatoid Arthritis: A Nationwide Population-Based Cohort Study
por: Kang, Seonyoung, et al.
Publicado: (2022) -
A cluster analysis of patients with axial spondyloarthritis using tumour necrosis factor alpha inhibitors based on clinical characteristics
por: Lee, Seulkee, et al.
Publicado: (2021) -
Cardiovascular risk associated with allopurinol or benzbromarone
treatment in patients with gout
por: Eun, Yeonghee, et al.
Publicado: (2022)