Cargando…

Integrative analysis of epigenetics data identifies gene-specific regulatory elements

Understanding how epigenetic variation in non-coding regions is involved in distal gene-expression regulation is an important problem. Regulatory regions can be associated to genes using large-scale datasets of epigenetic and expression data. However, for regions of complex epigenomic signals and en...

Descripción completa

Detalles Bibliográficos
Autores principales: Schmidt, Florian, Marx, Alexander, Baumgarten, Nina, Hebel, Marie, Wegner, Martin, Kaulich, Manuel, Leisegang, Matthias S, Brandes, Ralf P, Göke, Jonathan, Vreeken, Jilles, Schulz, Marcel H
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8501997/
https://www.ncbi.nlm.nih.gov/pubmed/34508352
http://dx.doi.org/10.1093/nar/gkab798
_version_ 1784580791060135936
author Schmidt, Florian
Marx, Alexander
Baumgarten, Nina
Hebel, Marie
Wegner, Martin
Kaulich, Manuel
Leisegang, Matthias S
Brandes, Ralf P
Göke, Jonathan
Vreeken, Jilles
Schulz, Marcel H
author_facet Schmidt, Florian
Marx, Alexander
Baumgarten, Nina
Hebel, Marie
Wegner, Martin
Kaulich, Manuel
Leisegang, Matthias S
Brandes, Ralf P
Göke, Jonathan
Vreeken, Jilles
Schulz, Marcel H
author_sort Schmidt, Florian
collection PubMed
description Understanding how epigenetic variation in non-coding regions is involved in distal gene-expression regulation is an important problem. Regulatory regions can be associated to genes using large-scale datasets of epigenetic and expression data. However, for regions of complex epigenomic signals and enhancers that regulate many genes, it is difficult to understand these associations. We present StitchIt, an approach to dissect epigenetic variation in a gene-specific manner for the detection of regulatory elements (REMs) without relying on peak calls in individual samples. StitchIt segments epigenetic signal tracks over many samples to generate the location and the target genes of a REM simultaneously. We show that this approach leads to a more accurate and refined REM detection compared to standard methods even on heterogeneous datasets, which are challenging to model. Also, StitchIt REMs are highly enriched in experimentally determined chromatin interactions and expression quantitative trait loci. We validated several newly predicted REMs using CRISPR-Cas9 experiments, thereby demonstrating the reliability of StitchIt. StitchIt is able to dissect regulation in superenhancers and predicts thousands of putative REMs that go unnoticed using peak-based approaches suggesting that a large part of the regulome might be uncharted water.
format Online
Article
Text
id pubmed-8501997
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-85019972021-10-12 Integrative analysis of epigenetics data identifies gene-specific regulatory elements Schmidt, Florian Marx, Alexander Baumgarten, Nina Hebel, Marie Wegner, Martin Kaulich, Manuel Leisegang, Matthias S Brandes, Ralf P Göke, Jonathan Vreeken, Jilles Schulz, Marcel H Nucleic Acids Res Gene regulation, Chromatin and Epigenetics Understanding how epigenetic variation in non-coding regions is involved in distal gene-expression regulation is an important problem. Regulatory regions can be associated to genes using large-scale datasets of epigenetic and expression data. However, for regions of complex epigenomic signals and enhancers that regulate many genes, it is difficult to understand these associations. We present StitchIt, an approach to dissect epigenetic variation in a gene-specific manner for the detection of regulatory elements (REMs) without relying on peak calls in individual samples. StitchIt segments epigenetic signal tracks over many samples to generate the location and the target genes of a REM simultaneously. We show that this approach leads to a more accurate and refined REM detection compared to standard methods even on heterogeneous datasets, which are challenging to model. Also, StitchIt REMs are highly enriched in experimentally determined chromatin interactions and expression quantitative trait loci. We validated several newly predicted REMs using CRISPR-Cas9 experiments, thereby demonstrating the reliability of StitchIt. StitchIt is able to dissect regulation in superenhancers and predicts thousands of putative REMs that go unnoticed using peak-based approaches suggesting that a large part of the regulome might be uncharted water. Oxford University Press 2021-09-11 /pmc/articles/PMC8501997/ /pubmed/34508352 http://dx.doi.org/10.1093/nar/gkab798 Text en © The Author(s) 2021. Published by Oxford University Press on behalf of Nucleic Acids Research. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Gene regulation, Chromatin and Epigenetics
Schmidt, Florian
Marx, Alexander
Baumgarten, Nina
Hebel, Marie
Wegner, Martin
Kaulich, Manuel
Leisegang, Matthias S
Brandes, Ralf P
Göke, Jonathan
Vreeken, Jilles
Schulz, Marcel H
Integrative analysis of epigenetics data identifies gene-specific regulatory elements
title Integrative analysis of epigenetics data identifies gene-specific regulatory elements
title_full Integrative analysis of epigenetics data identifies gene-specific regulatory elements
title_fullStr Integrative analysis of epigenetics data identifies gene-specific regulatory elements
title_full_unstemmed Integrative analysis of epigenetics data identifies gene-specific regulatory elements
title_short Integrative analysis of epigenetics data identifies gene-specific regulatory elements
title_sort integrative analysis of epigenetics data identifies gene-specific regulatory elements
topic Gene regulation, Chromatin and Epigenetics
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8501997/
https://www.ncbi.nlm.nih.gov/pubmed/34508352
http://dx.doi.org/10.1093/nar/gkab798
work_keys_str_mv AT schmidtflorian integrativeanalysisofepigeneticsdataidentifiesgenespecificregulatoryelements
AT marxalexander integrativeanalysisofepigeneticsdataidentifiesgenespecificregulatoryelements
AT baumgartennina integrativeanalysisofepigeneticsdataidentifiesgenespecificregulatoryelements
AT hebelmarie integrativeanalysisofepigeneticsdataidentifiesgenespecificregulatoryelements
AT wegnermartin integrativeanalysisofepigeneticsdataidentifiesgenespecificregulatoryelements
AT kaulichmanuel integrativeanalysisofepigeneticsdataidentifiesgenespecificregulatoryelements
AT leisegangmatthiass integrativeanalysisofepigeneticsdataidentifiesgenespecificregulatoryelements
AT brandesralfp integrativeanalysisofepigeneticsdataidentifiesgenespecificregulatoryelements
AT gokejonathan integrativeanalysisofepigeneticsdataidentifiesgenespecificregulatoryelements
AT vreekenjilles integrativeanalysisofepigeneticsdataidentifiesgenespecificregulatoryelements
AT schulzmarcelh integrativeanalysisofepigeneticsdataidentifiesgenespecificregulatoryelements