Cargando…
Deciphering enhancer sequence using thermodynamics-based models and convolutional neural networks
Deciphering the sequence-function relationship encoded in enhancers holds the key to interpreting non-coding variants and understanding mechanisms of transcriptomic variation. Several quantitative models exist for predicting enhancer function and underlying mechanisms; however, there has been no sys...
Autores principales: | Dibaeinia, Payam, Sinha, Saurabh |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8501998/ https://www.ncbi.nlm.nih.gov/pubmed/34508359 http://dx.doi.org/10.1093/nar/gkab765 |
Ejemplares similares
-
Tree-based convolutional neural networks: principles and applications
por: Mou, Lili, et al.
Publicado: (2018) -
CoCoNet—boosting RNA contact prediction by convolutional neural networks
por: Zerihun, Mehari B, et al.
Publicado: (2021) -
A deep recurrent neural network discovers complex biological rules to decipher RNA protein-coding potential
por: Hill, Steven T, et al.
Publicado: (2018) -
Detecting adaptive introgression in human evolution using convolutional neural networks
por: Gower, Graham, et al.
Publicado: (2021) -
Prognostic analysis of histopathological images using pre-trained convolutional neural networks: application to hepatocellular carcinoma
por: Lu, Liangqun, et al.
Publicado: (2020)