Cargando…
Unified approach to retrospective event detection for event- based epidemic intelligence
Inferring the magnitude and occurrence of real-world events from natural language text is a crucial task in various domains. Particularly in the domain of public health, the state-of-the-art document and token centric event detection approaches have not kept the pace with the growing need for more r...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8502099/ https://www.ncbi.nlm.nih.gov/pubmed/34776774 http://dx.doi.org/10.1007/s00799-021-00308-9 |
_version_ | 1784580813963132928 |
---|---|
author | Fisichella, Marco |
author_facet | Fisichella, Marco |
author_sort | Fisichella, Marco |
collection | PubMed |
description | Inferring the magnitude and occurrence of real-world events from natural language text is a crucial task in various domains. Particularly in the domain of public health, the state-of-the-art document and token centric event detection approaches have not kept the pace with the growing need for more robust event detection in public health. In this paper, we propose UPHED, a unified approach, which combines both the document and token centric event detection techniques in an unsupervised manner such that events which are: rare (aperiodic); reoccurring (periodic) can be detected using a generative model for the domain of public health. We evaluate the efficiency of our approach as well as its effectiveness for two real-world case studies with respect to the quality of document clusters. Our results show that we are able to achieve a precision of 60% and a recall of 71% analyzed using manually annotated real-world data. Finally, we also make a comparative analysis of our work with the well-established rule-based system of MedISys and find that UPHED can be used in a cooperative way with MedISys to not only detect similar anomalies, but can also deliver more information about the specific outbreak of reported diseases. |
format | Online Article Text |
id | pubmed-8502099 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Springer Berlin Heidelberg |
record_format | MEDLINE/PubMed |
spelling | pubmed-85020992021-10-12 Unified approach to retrospective event detection for event- based epidemic intelligence Fisichella, Marco Int J Digit Libr Article Inferring the magnitude and occurrence of real-world events from natural language text is a crucial task in various domains. Particularly in the domain of public health, the state-of-the-art document and token centric event detection approaches have not kept the pace with the growing need for more robust event detection in public health. In this paper, we propose UPHED, a unified approach, which combines both the document and token centric event detection techniques in an unsupervised manner such that events which are: rare (aperiodic); reoccurring (periodic) can be detected using a generative model for the domain of public health. We evaluate the efficiency of our approach as well as its effectiveness for two real-world case studies with respect to the quality of document clusters. Our results show that we are able to achieve a precision of 60% and a recall of 71% analyzed using manually annotated real-world data. Finally, we also make a comparative analysis of our work with the well-established rule-based system of MedISys and find that UPHED can be used in a cooperative way with MedISys to not only detect similar anomalies, but can also deliver more information about the specific outbreak of reported diseases. Springer Berlin Heidelberg 2021-10-09 2021 /pmc/articles/PMC8502099/ /pubmed/34776774 http://dx.doi.org/10.1007/s00799-021-00308-9 Text en © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic. |
spellingShingle | Article Fisichella, Marco Unified approach to retrospective event detection for event- based epidemic intelligence |
title | Unified approach to retrospective event detection for event- based epidemic intelligence |
title_full | Unified approach to retrospective event detection for event- based epidemic intelligence |
title_fullStr | Unified approach to retrospective event detection for event- based epidemic intelligence |
title_full_unstemmed | Unified approach to retrospective event detection for event- based epidemic intelligence |
title_short | Unified approach to retrospective event detection for event- based epidemic intelligence |
title_sort | unified approach to retrospective event detection for event- based epidemic intelligence |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8502099/ https://www.ncbi.nlm.nih.gov/pubmed/34776774 http://dx.doi.org/10.1007/s00799-021-00308-9 |
work_keys_str_mv | AT fisichellamarco unifiedapproachtoretrospectiveeventdetectionforeventbasedepidemicintelligence |