Cargando…
Current limitations to identify covid-19 using artificial intelligence with chest x-ray imaging (part ii). The shortcut learning problem
Since the outbreak of the COVID-19 pandemic, computer vision researchers have been working on automatic identification of this disease using radiological images. The results achieved by automatic classification methods far exceed those of human specialists, with sensitivity as high as 100% being rep...
Autores principales: | López-Cabrera, José Daniel, Orozco-Morales, Rubén, Portal-Díaz, Jorge Armando, Lovelle-Enríquez, Orlando, Pérez-Díaz, Marlén |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8502237/ https://www.ncbi.nlm.nih.gov/pubmed/34660166 http://dx.doi.org/10.1007/s12553-021-00609-8 |
Ejemplares similares
-
Current limitations to identify COVID-19 using artificial intelligence with chest X-ray imaging
por: López-Cabrera, José Daniel, et al.
Publicado: (2021) -
New patch-based strategy for COVID-19 automatic identification using chest x-ray images
por: Portal-Diaz, Jorge A, et al.
Publicado: (2022) -
Suboptimal Chest Radiography and Artificial Intelligence: The Problem and the Solution
por: Dasegowda, Giridhar, et al.
Publicado: (2023) -
Training certified detectives to track down the intrinsic shortcuts in COVID-19 chest x-ray data sets
por: Zhang, Ran, et al.
Publicado: (2023) -
Training certified detectives to track down the intrinsic shortcuts in COVID-19 chest x-ray data sets
por: Zhang, Ran, et al.
Publicado: (2023)