Cargando…

Tumor-immune ecosystem dynamics define an individual Radiation Immune Score to predict pan-cancer radiocurability()

Radiotherapy efficacy is the result of radiation-mediated cytotoxicity coupled with stimulation of antitumor immune responses. We develop an in silico 3-dimensional agent-based model of diverse tumor-immune ecosystems (TIES) represented as anti- or pro-tumor immune phenotypes. We validate the model...

Descripción completa

Detalles Bibliográficos
Autores principales: Alfonso, Juan C.L., Grass, G. Daniel, Welsh, Eric, Ahmed, Kamran A., Teer, Jamie K., Pilon-Thomas, Shari, Harrison, Louis B., Cleveland, John L., Mulé, James J., Eschrich, Steven A., Torres-Roca, Javier F., Enderling, Heiko
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Neoplasia Press 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8502777/
https://www.ncbi.nlm.nih.gov/pubmed/34619428
http://dx.doi.org/10.1016/j.neo.2021.09.003
_version_ 1784580963831906304
author Alfonso, Juan C.L.
Grass, G. Daniel
Welsh, Eric
Ahmed, Kamran A.
Teer, Jamie K.
Pilon-Thomas, Shari
Harrison, Louis B.
Cleveland, John L.
Mulé, James J.
Eschrich, Steven A.
Torres-Roca, Javier F.
Enderling, Heiko
author_facet Alfonso, Juan C.L.
Grass, G. Daniel
Welsh, Eric
Ahmed, Kamran A.
Teer, Jamie K.
Pilon-Thomas, Shari
Harrison, Louis B.
Cleveland, John L.
Mulé, James J.
Eschrich, Steven A.
Torres-Roca, Javier F.
Enderling, Heiko
author_sort Alfonso, Juan C.L.
collection PubMed
description Radiotherapy efficacy is the result of radiation-mediated cytotoxicity coupled with stimulation of antitumor immune responses. We develop an in silico 3-dimensional agent-based model of diverse tumor-immune ecosystems (TIES) represented as anti- or pro-tumor immune phenotypes. We validate the model in 10,469 patients across 31 tumor types by demonstrating that clinically detected tumors have pro-tumor TIES. We then quantify the likelihood radiation induces antitumor TIES shifts toward immune-mediated tumor elimination by developing the individual Radiation Immune Score (iRIS). We show iRIS distribution across 31 tumor types is consistent with the clinical effectiveness of radiotherapy, and in combination with a molecular radiosensitivity index (RSI) combines to predict pan-cancer radiocurability. We show that iRIS correlates with local control and survival in a separate cohort of 59 lung cancer patients treated with radiation. In combination, iRIS and RSI predict radiation-induced TIES shifts in individual patients and identify candidates for radiation de-escalation and treatment escalation. This is the first clinically and biologically validated computational model to simulate and predict pan-cancer response and outcomes via the perturbation of the TIES by radiotherapy.
format Online
Article
Text
id pubmed-8502777
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Neoplasia Press
record_format MEDLINE/PubMed
spelling pubmed-85027772021-10-14 Tumor-immune ecosystem dynamics define an individual Radiation Immune Score to predict pan-cancer radiocurability() Alfonso, Juan C.L. Grass, G. Daniel Welsh, Eric Ahmed, Kamran A. Teer, Jamie K. Pilon-Thomas, Shari Harrison, Louis B. Cleveland, John L. Mulé, James J. Eschrich, Steven A. Torres-Roca, Javier F. Enderling, Heiko Neoplasia Original Research Radiotherapy efficacy is the result of radiation-mediated cytotoxicity coupled with stimulation of antitumor immune responses. We develop an in silico 3-dimensional agent-based model of diverse tumor-immune ecosystems (TIES) represented as anti- or pro-tumor immune phenotypes. We validate the model in 10,469 patients across 31 tumor types by demonstrating that clinically detected tumors have pro-tumor TIES. We then quantify the likelihood radiation induces antitumor TIES shifts toward immune-mediated tumor elimination by developing the individual Radiation Immune Score (iRIS). We show iRIS distribution across 31 tumor types is consistent with the clinical effectiveness of radiotherapy, and in combination with a molecular radiosensitivity index (RSI) combines to predict pan-cancer radiocurability. We show that iRIS correlates with local control and survival in a separate cohort of 59 lung cancer patients treated with radiation. In combination, iRIS and RSI predict radiation-induced TIES shifts in individual patients and identify candidates for radiation de-escalation and treatment escalation. This is the first clinically and biologically validated computational model to simulate and predict pan-cancer response and outcomes via the perturbation of the TIES by radiotherapy. Neoplasia Press 2021-10-05 /pmc/articles/PMC8502777/ /pubmed/34619428 http://dx.doi.org/10.1016/j.neo.2021.09.003 Text en © 2021 The Authors. Published by Elsevier Inc. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Original Research
Alfonso, Juan C.L.
Grass, G. Daniel
Welsh, Eric
Ahmed, Kamran A.
Teer, Jamie K.
Pilon-Thomas, Shari
Harrison, Louis B.
Cleveland, John L.
Mulé, James J.
Eschrich, Steven A.
Torres-Roca, Javier F.
Enderling, Heiko
Tumor-immune ecosystem dynamics define an individual Radiation Immune Score to predict pan-cancer radiocurability()
title Tumor-immune ecosystem dynamics define an individual Radiation Immune Score to predict pan-cancer radiocurability()
title_full Tumor-immune ecosystem dynamics define an individual Radiation Immune Score to predict pan-cancer radiocurability()
title_fullStr Tumor-immune ecosystem dynamics define an individual Radiation Immune Score to predict pan-cancer radiocurability()
title_full_unstemmed Tumor-immune ecosystem dynamics define an individual Radiation Immune Score to predict pan-cancer radiocurability()
title_short Tumor-immune ecosystem dynamics define an individual Radiation Immune Score to predict pan-cancer radiocurability()
title_sort tumor-immune ecosystem dynamics define an individual radiation immune score to predict pan-cancer radiocurability()
topic Original Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8502777/
https://www.ncbi.nlm.nih.gov/pubmed/34619428
http://dx.doi.org/10.1016/j.neo.2021.09.003
work_keys_str_mv AT alfonsojuancl tumorimmuneecosystemdynamicsdefineanindividualradiationimmunescoretopredictpancancerradiocurability
AT grassgdaniel tumorimmuneecosystemdynamicsdefineanindividualradiationimmunescoretopredictpancancerradiocurability
AT welsheric tumorimmuneecosystemdynamicsdefineanindividualradiationimmunescoretopredictpancancerradiocurability
AT ahmedkamrana tumorimmuneecosystemdynamicsdefineanindividualradiationimmunescoretopredictpancancerradiocurability
AT teerjamiek tumorimmuneecosystemdynamicsdefineanindividualradiationimmunescoretopredictpancancerradiocurability
AT pilonthomasshari tumorimmuneecosystemdynamicsdefineanindividualradiationimmunescoretopredictpancancerradiocurability
AT harrisonlouisb tumorimmuneecosystemdynamicsdefineanindividualradiationimmunescoretopredictpancancerradiocurability
AT clevelandjohnl tumorimmuneecosystemdynamicsdefineanindividualradiationimmunescoretopredictpancancerradiocurability
AT mulejamesj tumorimmuneecosystemdynamicsdefineanindividualradiationimmunescoretopredictpancancerradiocurability
AT eschrichstevena tumorimmuneecosystemdynamicsdefineanindividualradiationimmunescoretopredictpancancerradiocurability
AT torresrocajavierf tumorimmuneecosystemdynamicsdefineanindividualradiationimmunescoretopredictpancancerradiocurability
AT enderlingheiko tumorimmuneecosystemdynamicsdefineanindividualradiationimmunescoretopredictpancancerradiocurability