Cargando…
Improving Sentiment Analysis for Social Media Applications Using an Ensemble Deep Learning Language Model
As data grow rapidly on social media by users’ contributions, specially with the recent coronavirus pandemic, the need to acquire knowledge of their behaviors is in high demand. The opinions behind posts on the pandemic are the scope of the tested dataset in this study. Finding the most suitable cla...
Autor principal: | Alsayat, Ahmed |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8502794/ https://www.ncbi.nlm.nih.gov/pubmed/34660170 http://dx.doi.org/10.1007/s13369-021-06227-w |
Ejemplares similares
-
Building lexicon-based sentiment analysis model for low-resource languages
por: Mohammed, Idi, et al.
Publicado: (2023) -
Sentiment analysis in social networks
por: Pozzi, Federico Alberto, et al.
Publicado: (2017) -
Natural language processing with PyTorch: build intelligent language applications using deep learning
por: Rao, Delip, et al.
Publicado: (2019) -
Deep learning in natural language processing
por: Deng, Li, et al.
Publicado: (2018) -
Information-theoretic measures for nonlinear causality detection: application to social media sentiment and cryptocurrency prices
por: Keskin, Z., et al.
Publicado: (2020)