Cargando…

Preparation of Daidzein microparticles through liquid antisolvent precipitation under ultrasonication

In this study, daidzein microparticles (DMP) were prepared using an improved ultrasound-assisted antisolvent precipitation method. Preliminary experiments were conducted using six single-factor experiments, and principal component analysis (PCA) was adopted to obtain the three staple elements of the...

Descripción completa

Detalles Bibliográficos
Autores principales: Yu, Guoping, Zhu, Hongwei, Huang, Yan, Zhang, Xiaonan, Sun, Lina, Wang, Yutong, Xia, Xinghao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8502945/
https://www.ncbi.nlm.nih.gov/pubmed/34624663
http://dx.doi.org/10.1016/j.ultsonch.2021.105772
Descripción
Sumario:In this study, daidzein microparticles (DMP) were prepared using an improved ultrasound-assisted antisolvent precipitation method. Preliminary experiments were conducted using six single-factor experiments, and principal component analysis (PCA) was adopted to obtain the three staple elements of the ultrasonic power, solution concentration, and nozzle diameter. The response surface Box-Behnken (BBD) design was used to optimize the level of the above factors. The optimal preparation conditions of the DMP were obtained as follows: the flow rate was 4 mL/min, the concentration of the daidzein solution was 16 mg/mL, the ratio of antisolvent to solvent (liquid-to-liquid ratio) was 9, the nozzle diameter was 300 μm, the ultrasonic power was 180 W (665 W/L), and the system speed was 760 r/min. The minimum average particle size of DMP was 181 ± 2 nm. The properties of daidzein particles before and after preparation were analyzed via scanning electron microscopy, X-ray diffraction analysis, Differential scanning calorimetry and Fourier transform infrared spectroscopy, no obvious change in its chemical structure was observed, but crystallinity was reduced. Compared with daidzein powder, DMP has a higher solubility and stronger antioxidant capacity. The above results indicate that the improved method of ultrasonication combined with antisolvent can reduce the size of daidzein particles and has a great potential in practical production.