Cargando…
Application of Machine Learning Techniques to Identify Data Reliability and Factors Affecting Outcome After Stroke Using Electronic Administrative Records
Aim: To use available electronic administrative records to identify data reliability, predict discharge destination, and identify risk factors associated with specific outcomes following hospital admission with stroke, compared to stroke specific clinical factors, using machine learning techniques....
Autores principales: | Rana, Santu, Luo, Wei, Tran, Truyen, Venkatesh, Svetha, Talman, Paul, Phan, Thanh, Phung, Dinh, Clissold, Benjamin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8503552/ https://www.ncbi.nlm.nih.gov/pubmed/34646226 http://dx.doi.org/10.3389/fneur.2021.670379 |
Ejemplares similares
-
Is Demography Destiny? Application of Machine Learning Techniques to Accurately Predict Population Health Outcomes from a Minimal Demographic Dataset
por: Luo, Wei, et al.
Publicado: (2015) -
Machine-learning prediction of cancer survival: a retrospective study using electronic administrative records and a cancer registry
por: Gupta, Sunil, et al.
Publicado: (2014) -
Risk stratification using data from electronic medical records better predicts suicide risks than clinician assessments
por: Tran, Truyen, et al.
Publicado: (2014) -
A framework for feature extraction from hospital medical data with applications in risk prediction
por: Tran, Truyen, et al.
Publicado: (2014) -
Guidelines for Developing and Reporting Machine Learning Predictive Models in Biomedical Research: A Multidisciplinary View
por: Luo, Wei, et al.
Publicado: (2016)