Cargando…
An Automatic Framework to Create Patient-specific Eye Models From 3D Magnetic Resonance Images for Treatment Selection in Patients With Uveal Melanoma
PURPOSE: The optimal treatment strategy for uveal melanoma (UM) relies on many factors, the most important being tumor size and location. Building on recent developments in high-resolution 3D ocular magnetic resonance imaging (MRI), we developed an automatic image-processing framework to create pati...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8503565/ https://www.ncbi.nlm.nih.gov/pubmed/34660938 http://dx.doi.org/10.1016/j.adro.2021.100697 |
_version_ | 1784581152352239616 |
---|---|
author | Hassan, Mohamed Kilany Fleury, Emmanuelle Shamonin, Denis Fonk, Lorna Grech Marinkovic, Marina Jaarsma-Coes, Myriam G. Luyten, Gregorius P.M. Webb, Andrew Beenakker, Jan-Willem Stoel, Berend |
author_facet | Hassan, Mohamed Kilany Fleury, Emmanuelle Shamonin, Denis Fonk, Lorna Grech Marinkovic, Marina Jaarsma-Coes, Myriam G. Luyten, Gregorius P.M. Webb, Andrew Beenakker, Jan-Willem Stoel, Berend |
author_sort | Hassan, Mohamed Kilany |
collection | PubMed |
description | PURPOSE: The optimal treatment strategy for uveal melanoma (UM) relies on many factors, the most important being tumor size and location. Building on recent developments in high-resolution 3D ocular magnetic resonance imaging (MRI), we developed an automatic image-processing framework to create patient-specific eye models and to subsequently determine the full 3D tumor shape and size automatically. METHODS AND MATERIALS: From 15 patients with UM, 3D inversion-recovery gradient-echo (T1-weighted) and 3D fat-suppressed spin-echo (T2-weighted) images were acquired with a 7T MRI scanner. First, the sclera and cornea were segmented from the T2-weighted image by mesh-fitting. The T1- and T2-weighted images were then coregistered. From the registered T1-weighted image, the lens, vitreous body, retinal detachment, and tumor were segmented. Fuzzy C-means clustering was used to differentiate the tumor from retinal detachments. The tumor model was verified and (if needed) edited by an ophthalmic MRI specialist. Subsequently, the prominence and largest basal diameter of the tumor were measured automatically based on the verified contours. These results were compared with manual assessments on the original images and with ultrasound measurements to show the errors in manual analysis. RESULTS: The framework successfully created an eye model fully automatically in 12 cases. In these cases, a Dice similarity coefficient (mean surface distance) of 97.7%±0.84% (0.17±0.11 mm) was achieved for the sclera, 96.8%±1.05% (0.20±0.06 mm) for the vitreous body, 91.6%±4.83% (0.15±0.06 mm) for the lens, and 86.0%±7.4% (0.35±0.27 mm) for the tumor. The manual assessments deviated, on average, 0.39±0.31 mm in prominence and 1.7±1.22 mm in basal diameter from the automatic measurements. CONCLUSIONS: The described framework combined information from T1- and T2-weighted images to accurately determine tumor boundaries in 3D. The proposed process may have a direct effect on clinical workflow, as it enables an accurate 3D assessment of tumor dimensions, which directly influences therapy selection. |
format | Online Article Text |
id | pubmed-8503565 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-85035652021-10-15 An Automatic Framework to Create Patient-specific Eye Models From 3D Magnetic Resonance Images for Treatment Selection in Patients With Uveal Melanoma Hassan, Mohamed Kilany Fleury, Emmanuelle Shamonin, Denis Fonk, Lorna Grech Marinkovic, Marina Jaarsma-Coes, Myriam G. Luyten, Gregorius P.M. Webb, Andrew Beenakker, Jan-Willem Stoel, Berend Adv Radiat Oncol Scientific Article PURPOSE: The optimal treatment strategy for uveal melanoma (UM) relies on many factors, the most important being tumor size and location. Building on recent developments in high-resolution 3D ocular magnetic resonance imaging (MRI), we developed an automatic image-processing framework to create patient-specific eye models and to subsequently determine the full 3D tumor shape and size automatically. METHODS AND MATERIALS: From 15 patients with UM, 3D inversion-recovery gradient-echo (T1-weighted) and 3D fat-suppressed spin-echo (T2-weighted) images were acquired with a 7T MRI scanner. First, the sclera and cornea were segmented from the T2-weighted image by mesh-fitting. The T1- and T2-weighted images were then coregistered. From the registered T1-weighted image, the lens, vitreous body, retinal detachment, and tumor were segmented. Fuzzy C-means clustering was used to differentiate the tumor from retinal detachments. The tumor model was verified and (if needed) edited by an ophthalmic MRI specialist. Subsequently, the prominence and largest basal diameter of the tumor were measured automatically based on the verified contours. These results were compared with manual assessments on the original images and with ultrasound measurements to show the errors in manual analysis. RESULTS: The framework successfully created an eye model fully automatically in 12 cases. In these cases, a Dice similarity coefficient (mean surface distance) of 97.7%±0.84% (0.17±0.11 mm) was achieved for the sclera, 96.8%±1.05% (0.20±0.06 mm) for the vitreous body, 91.6%±4.83% (0.15±0.06 mm) for the lens, and 86.0%±7.4% (0.35±0.27 mm) for the tumor. The manual assessments deviated, on average, 0.39±0.31 mm in prominence and 1.7±1.22 mm in basal diameter from the automatic measurements. CONCLUSIONS: The described framework combined information from T1- and T2-weighted images to accurately determine tumor boundaries in 3D. The proposed process may have a direct effect on clinical workflow, as it enables an accurate 3D assessment of tumor dimensions, which directly influences therapy selection. Elsevier 2021-04-03 /pmc/articles/PMC8503565/ /pubmed/34660938 http://dx.doi.org/10.1016/j.adro.2021.100697 Text en © 2021 Published by Elsevier Inc. on behalf of American Society for Radiation Oncology. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Scientific Article Hassan, Mohamed Kilany Fleury, Emmanuelle Shamonin, Denis Fonk, Lorna Grech Marinkovic, Marina Jaarsma-Coes, Myriam G. Luyten, Gregorius P.M. Webb, Andrew Beenakker, Jan-Willem Stoel, Berend An Automatic Framework to Create Patient-specific Eye Models From 3D Magnetic Resonance Images for Treatment Selection in Patients With Uveal Melanoma |
title | An Automatic Framework to Create Patient-specific Eye Models From 3D Magnetic Resonance Images for Treatment Selection in Patients With Uveal Melanoma |
title_full | An Automatic Framework to Create Patient-specific Eye Models From 3D Magnetic Resonance Images for Treatment Selection in Patients With Uveal Melanoma |
title_fullStr | An Automatic Framework to Create Patient-specific Eye Models From 3D Magnetic Resonance Images for Treatment Selection in Patients With Uveal Melanoma |
title_full_unstemmed | An Automatic Framework to Create Patient-specific Eye Models From 3D Magnetic Resonance Images for Treatment Selection in Patients With Uveal Melanoma |
title_short | An Automatic Framework to Create Patient-specific Eye Models From 3D Magnetic Resonance Images for Treatment Selection in Patients With Uveal Melanoma |
title_sort | automatic framework to create patient-specific eye models from 3d magnetic resonance images for treatment selection in patients with uveal melanoma |
topic | Scientific Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8503565/ https://www.ncbi.nlm.nih.gov/pubmed/34660938 http://dx.doi.org/10.1016/j.adro.2021.100697 |
work_keys_str_mv | AT hassanmohamedkilany anautomaticframeworktocreatepatientspecificeyemodelsfrom3dmagneticresonanceimagesfortreatmentselectioninpatientswithuvealmelanoma AT fleuryemmanuelle anautomaticframeworktocreatepatientspecificeyemodelsfrom3dmagneticresonanceimagesfortreatmentselectioninpatientswithuvealmelanoma AT shamonindenis anautomaticframeworktocreatepatientspecificeyemodelsfrom3dmagneticresonanceimagesfortreatmentselectioninpatientswithuvealmelanoma AT fonklornagrech anautomaticframeworktocreatepatientspecificeyemodelsfrom3dmagneticresonanceimagesfortreatmentselectioninpatientswithuvealmelanoma AT marinkovicmarina anautomaticframeworktocreatepatientspecificeyemodelsfrom3dmagneticresonanceimagesfortreatmentselectioninpatientswithuvealmelanoma AT jaarsmacoesmyriamg anautomaticframeworktocreatepatientspecificeyemodelsfrom3dmagneticresonanceimagesfortreatmentselectioninpatientswithuvealmelanoma AT luytengregoriuspm anautomaticframeworktocreatepatientspecificeyemodelsfrom3dmagneticresonanceimagesfortreatmentselectioninpatientswithuvealmelanoma AT webbandrew anautomaticframeworktocreatepatientspecificeyemodelsfrom3dmagneticresonanceimagesfortreatmentselectioninpatientswithuvealmelanoma AT beenakkerjanwillem anautomaticframeworktocreatepatientspecificeyemodelsfrom3dmagneticresonanceimagesfortreatmentselectioninpatientswithuvealmelanoma AT stoelberend anautomaticframeworktocreatepatientspecificeyemodelsfrom3dmagneticresonanceimagesfortreatmentselectioninpatientswithuvealmelanoma AT hassanmohamedkilany automaticframeworktocreatepatientspecificeyemodelsfrom3dmagneticresonanceimagesfortreatmentselectioninpatientswithuvealmelanoma AT fleuryemmanuelle automaticframeworktocreatepatientspecificeyemodelsfrom3dmagneticresonanceimagesfortreatmentselectioninpatientswithuvealmelanoma AT shamonindenis automaticframeworktocreatepatientspecificeyemodelsfrom3dmagneticresonanceimagesfortreatmentselectioninpatientswithuvealmelanoma AT fonklornagrech automaticframeworktocreatepatientspecificeyemodelsfrom3dmagneticresonanceimagesfortreatmentselectioninpatientswithuvealmelanoma AT marinkovicmarina automaticframeworktocreatepatientspecificeyemodelsfrom3dmagneticresonanceimagesfortreatmentselectioninpatientswithuvealmelanoma AT jaarsmacoesmyriamg automaticframeworktocreatepatientspecificeyemodelsfrom3dmagneticresonanceimagesfortreatmentselectioninpatientswithuvealmelanoma AT luytengregoriuspm automaticframeworktocreatepatientspecificeyemodelsfrom3dmagneticresonanceimagesfortreatmentselectioninpatientswithuvealmelanoma AT webbandrew automaticframeworktocreatepatientspecificeyemodelsfrom3dmagneticresonanceimagesfortreatmentselectioninpatientswithuvealmelanoma AT beenakkerjanwillem automaticframeworktocreatepatientspecificeyemodelsfrom3dmagneticresonanceimagesfortreatmentselectioninpatientswithuvealmelanoma AT stoelberend automaticframeworktocreatepatientspecificeyemodelsfrom3dmagneticresonanceimagesfortreatmentselectioninpatientswithuvealmelanoma |