Cargando…

Dataset for evaluating WRF-Chem sensitivity to biogenic emission inventories in a tropical region. Global online model (MEGAN) vs local offline model (BIGA)

This article presents a dataset comparing emissions of Biogenic Volatile Organic Compounds (BVOC) in a zone of complex topography in the tropical Andes, which presents elevations ranging from 250 to more than 4000 m above sea level in a radius of only 50 km. Two approximations were evaluated, (1) on...

Descripción completa

Detalles Bibliográficos
Autores principales: Cifuentes, F., González, C.M., Aristizábal, B.H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8503576/
https://www.ncbi.nlm.nih.gov/pubmed/34660858
http://dx.doi.org/10.1016/j.dib.2021.107438
Descripción
Sumario:This article presents a dataset comparing emissions of Biogenic Volatile Organic Compounds (BVOC) in a zone of complex topography in the tropical Andes, which presents elevations ranging from 250 to more than 4000 m above sea level in a radius of only 50 km. Two approximations were evaluated, (1) online with the Model of Emissions of Gases and Aerosols from Nature (MEGAN) coupled with the Weather Research and Forecast model with Chemistry (WRF-Chem) and (2) offline applying the Biogenic Altitudinal Gradient Model (BIGA). Modeled concentrations of pollutants (mainly isoprene and tropospheric ozone) were obtained with WRF-Chem employing the biogenic emission models mentioned previously. This information identified areas where BVOC emissions vary significantly, comparing the global emission inventory (MEGAN) and the local inventory (BIGA). Re-evaluation of the emission factors and land cover assigned to those areas in the global online biogenic models should be considered in order to reduce the uncertainty in the values. In addition, the dataset shows the impact of the biogenic emission inventories on the air quality simulations on a tropical high mountain area, where vegetation is diverse, and the altitudinal changes influence meteorological variables.