Cargando…

Towards a better understanding of thermally treated polycarbophil matrix tablets for controlled release

Polycarbophil (POL), a polyacrylic acid cross-linked with divinyl glycol, is widely used in semisolid and solid dosage forms. When undergoing a thermal treatment in the range 120–160 °C, POL shows interesting morphological modifications, related to changes in physical properties, such as swelling of...

Descripción completa

Detalles Bibliográficos
Autores principales: Baldassari, Sara, Cirrincione, Paola, Ailuno, Giorgia, Drava, Giuliana, Arpicco, Silvia, Caviglioli, Gabriele
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8503905/
https://www.ncbi.nlm.nih.gov/pubmed/34661093
http://dx.doi.org/10.1016/j.ijpx.2021.100098
Descripción
Sumario:Polycarbophil (POL), a polyacrylic acid cross-linked with divinyl glycol, is widely used in semisolid and solid dosage forms. When undergoing a thermal treatment in the range 120–160 °C, POL shows interesting morphological modifications, related to changes in physical properties, such as swelling of the powder granules, or hardening and matrix formation if included in the composition of a tablet. Thermal analysis conducted on POL highlighted a thermal event (Z) that can be correlated both to the shrinking of the powder granules and to the matrix formation in compacted POL powder. Modulated differential scanning calorimetry (MDSC) allowed to distinguish, inside event Z, an irreversible process overlapping with a reversible glass transition, attributable to the volatilization of residual solvents identified, through a complex TGA-FTIR-GC–MS interface, as acetate esters used for the polymer production as very fine powder. A specific interaction between acetates and POL, capable of stabilizing the polymer chains in a given conformation, was highlighted. The molecular rearrangement of the POL chains, following the volatilization of the solvent-stabilizers, is therefore ascribable to a loss of energetic stability of this material, which justifies the shrinking phenomena in the granules of the powder and the matrix formation when POL is compacted.