Cargando…
Artificial image objects for classification of breast cancer biomarkers with transcriptome sequencing data and convolutional neural network algorithms
BACKGROUND: Transcriptome sequencing has been broadly available in clinical studies. However, it remains a challenge to utilize these data effectively for clinical applications due to the high dimension of the data and the highly correlated expression between individual genes. METHODS: We proposed a...
Autores principales: | Chen, Xiangning, Chen, Daniel G., Zhao, Zhongming, Balko, Justin M., Chen, Jingchun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8504079/ https://www.ncbi.nlm.nih.gov/pubmed/34629099 http://dx.doi.org/10.1186/s13058-021-01474-z |
Ejemplares similares
-
Artificial image objects for classification of schizophrenia with GWAS-selected SNVs and convolutional neural network
por: Chen, Xiangning, et al.
Publicado: (2021) -
Rewired Pathways and Disrupted Pathway Crosstalk in Schizophrenia Transcriptomes by Multiple Differential Coexpression Methods
por: Yu, Hui, et al.
Publicado: (2021) -
Convolutional Neural Networks-Based Object Detection Algorithm by Jointing Semantic Segmentation for Images
por: Qiang, Baohua, et al.
Publicado: (2020) -
Objects Classification by Learning-Based Visual Saliency Model and Convolutional Neural Network
por: Li, Na, et al.
Publicado: (2016) -
Improved Colony Predation Algorithm Optimized Convolutional Neural Networks for Electrocardiogram Signal Classification
por: He, Xinxin, et al.
Publicado: (2023)