Cargando…
Melanoma brain metastases that progress on BRAF-MEK inhibitors demonstrate resistance to ipilimumab-nivolumab that is associated with the Innate PD-1 Resistance Signature (IPRES)
BACKGROUND: Melanoma brain metastases (MBMs) are a challenging clinical problem with high morbidity and mortality. Although first-line dabrafenib–trametinib and ipilimumab–nivolumab have similar intracranial response rates (50%–55%), central nervous system (CNS) resistance to BRAF-MEK inhibitors (BR...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BMJ Publishing Group
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8504361/ https://www.ncbi.nlm.nih.gov/pubmed/34625515 http://dx.doi.org/10.1136/jitc-2021-002995 |
Sumario: | BACKGROUND: Melanoma brain metastases (MBMs) are a challenging clinical problem with high morbidity and mortality. Although first-line dabrafenib–trametinib and ipilimumab–nivolumab have similar intracranial response rates (50%–55%), central nervous system (CNS) resistance to BRAF-MEK inhibitors (BRAF-MEKi) usually occurs around 6 months, and durable responses are only seen with combination immunotherapy. We sought to investigate the utility of ipilimumab–nivolumab after MBM progression on BRAF-MEKi and identify mechanisms of resistance. METHODS: Patients who received first-line ipilimumab–nivolumab for MBMs or second/third line ipilimumab–nivolumab for intracranial metastases with BRAF(V600) mutations with prior progression on BRAF-MEKi and MRI brain staging from March 1, 2015 to June 30, 2018 were included. Modified intracranial RECIST was used to assess response. Formalin-fixed paraffin-embedded samples of BRAF(V600) mutant MBMs that were naïve to systemic treatment (n=18) or excised after progression on BRAF-MEKi (n=14) underwent whole transcriptome sequencing. Comparative analyses of MBMs naïve to systemic treatment versus BRAF-MEKi progression were performed. RESULTS: Twenty-five and 30 patients who received first and second/third line ipilimumab–nivolumab, were included respectively. Median sum of MBM diameters was 13 and 20.5 mm for the first and second/third line ipilimumab–nivolumab groups, respectively. Intracranial response rate was 75.0% (12/16), and median progression-free survival (PFS) was 41.6 months for first-line ipilimumab–nivolumab. Efficacy of second/third line ipilimumab-nivolumab after BRAF-MEKi progression was poor with an intracranial response rate of 4.8% (1/21) and median PFS of 1.3 months. Given the poor activity of ipilimumab–nivolumab after BRAF-MEKi MBM progression, we performed whole transcriptome sequencing to identify mechanisms of drug resistance. We identified a set of 178 differentially expressed genes (DEGs) between naïve and MBMs with progression on BRAF-MEKi treatment (p value <0.05, false discovery rate (FDR) <0.1). No distinct pathways were identified from gene set enrichment analyses using Kyoto Encyclopedia of Genes and Genomes, Gene Ontogeny or Hallmark libraries; however, enrichment of DEG from the Innate Anti-PD1 Resistance Signature (IPRES) was identified (p value=0.007, FDR=0.03). CONCLUSIONS: Second-line ipilimumab–nivolumab for MBMs after BRAF-MEKi progression has poor activity. MBMs that are resistant to BRAF-MEKi that also conferred resistance to second-line ipilimumab–nivolumab showed enrichment of the IPRES gene signature. |
---|