Cargando…
Low neuronal metabolism during isoflurane-induced burst suppression is related to synaptic inhibition while neurovascular coupling and mitochondrial function remain intact
Deep anaesthesia may impair neuronal, vascular and mitochondrial function facilitating neurological complications, such as delirium and stroke. On the other hand, deep anaesthesia is performed for neuroprotection in critical brain diseases such as status epilepticus or traumatic brain injury. Since...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8504408/ https://www.ncbi.nlm.nih.gov/pubmed/33899556 http://dx.doi.org/10.1177/0271678X211010353 |
_version_ | 1784581317457870848 |
---|---|
author | Berndt, Nikolaus Kovács, Richard Schoknecht, Karl Rösner, Jörg Reiffurth, Clemens Maechler, Mathilde Holzhütter, Hermann-Georg Dreier, Jens P Spies, Claudia Liotta, Agustin |
author_facet | Berndt, Nikolaus Kovács, Richard Schoknecht, Karl Rösner, Jörg Reiffurth, Clemens Maechler, Mathilde Holzhütter, Hermann-Georg Dreier, Jens P Spies, Claudia Liotta, Agustin |
author_sort | Berndt, Nikolaus |
collection | PubMed |
description | Deep anaesthesia may impair neuronal, vascular and mitochondrial function facilitating neurological complications, such as delirium and stroke. On the other hand, deep anaesthesia is performed for neuroprotection in critical brain diseases such as status epilepticus or traumatic brain injury. Since the commonly used anaesthetic propofol causes mitochondrial dysfunction, we investigated the impact of the alternative anaesthetic isoflurane on neuro-metabolism. In deeply anaesthetised Wistar rats (burst suppression pattern), we measured increased cortical tissue oxygen pressure (p(ti)O(2)), a ∼35% drop in regional cerebral blood flow (rCBF) and burst-associated neurovascular responses. In vitro, 3% isoflurane blocked synaptic transmission and impaired network oscillations, thereby decreasing the cerebral metabolic rate of oxygen (CMRO(2)). Concerning mitochondrial function, isoflurane induced a reductive shift in flavin adenine dinucleotide (FAD) and decreased stimulus-induced FAD transients as Ca(2+) influx was reduced by ∼50%. Computer simulations based on experimental results predicted no direct effects of isoflurane on mitochondrial complexes or ATP-synthesis. We found that isoflurane-induced burst suppression is related to decreased ATP consumption due to inhibition of synaptic activity while neurovascular coupling and mitochondrial function remain intact. The neurometabolic profile of isoflurane thus appears to be superior to that of propofol which has been shown to impair the mitochondrial respiratory chain. |
format | Online Article Text |
id | pubmed-8504408 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | SAGE Publications |
record_format | MEDLINE/PubMed |
spelling | pubmed-85044082021-10-12 Low neuronal metabolism during isoflurane-induced burst suppression is related to synaptic inhibition while neurovascular coupling and mitochondrial function remain intact Berndt, Nikolaus Kovács, Richard Schoknecht, Karl Rösner, Jörg Reiffurth, Clemens Maechler, Mathilde Holzhütter, Hermann-Georg Dreier, Jens P Spies, Claudia Liotta, Agustin J Cereb Blood Flow Metab Original Articles Deep anaesthesia may impair neuronal, vascular and mitochondrial function facilitating neurological complications, such as delirium and stroke. On the other hand, deep anaesthesia is performed for neuroprotection in critical brain diseases such as status epilepticus or traumatic brain injury. Since the commonly used anaesthetic propofol causes mitochondrial dysfunction, we investigated the impact of the alternative anaesthetic isoflurane on neuro-metabolism. In deeply anaesthetised Wistar rats (burst suppression pattern), we measured increased cortical tissue oxygen pressure (p(ti)O(2)), a ∼35% drop in regional cerebral blood flow (rCBF) and burst-associated neurovascular responses. In vitro, 3% isoflurane blocked synaptic transmission and impaired network oscillations, thereby decreasing the cerebral metabolic rate of oxygen (CMRO(2)). Concerning mitochondrial function, isoflurane induced a reductive shift in flavin adenine dinucleotide (FAD) and decreased stimulus-induced FAD transients as Ca(2+) influx was reduced by ∼50%. Computer simulations based on experimental results predicted no direct effects of isoflurane on mitochondrial complexes or ATP-synthesis. We found that isoflurane-induced burst suppression is related to decreased ATP consumption due to inhibition of synaptic activity while neurovascular coupling and mitochondrial function remain intact. The neurometabolic profile of isoflurane thus appears to be superior to that of propofol which has been shown to impair the mitochondrial respiratory chain. SAGE Publications 2021-04-25 2021-10 /pmc/articles/PMC8504408/ /pubmed/33899556 http://dx.doi.org/10.1177/0271678X211010353 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/This article is distributed under the terms of the Creative Commons Attribution 4.0 License (https://creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage). |
spellingShingle | Original Articles Berndt, Nikolaus Kovács, Richard Schoknecht, Karl Rösner, Jörg Reiffurth, Clemens Maechler, Mathilde Holzhütter, Hermann-Georg Dreier, Jens P Spies, Claudia Liotta, Agustin Low neuronal metabolism during isoflurane-induced burst suppression is related to synaptic inhibition while neurovascular coupling and mitochondrial function remain intact |
title | Low neuronal metabolism during isoflurane-induced burst suppression is related to synaptic inhibition while neurovascular coupling and mitochondrial function remain intact |
title_full | Low neuronal metabolism during isoflurane-induced burst suppression is related to synaptic inhibition while neurovascular coupling and mitochondrial function remain intact |
title_fullStr | Low neuronal metabolism during isoflurane-induced burst suppression is related to synaptic inhibition while neurovascular coupling and mitochondrial function remain intact |
title_full_unstemmed | Low neuronal metabolism during isoflurane-induced burst suppression is related to synaptic inhibition while neurovascular coupling and mitochondrial function remain intact |
title_short | Low neuronal metabolism during isoflurane-induced burst suppression is related to synaptic inhibition while neurovascular coupling and mitochondrial function remain intact |
title_sort | low neuronal metabolism during isoflurane-induced burst suppression is related to synaptic inhibition while neurovascular coupling and mitochondrial function remain intact |
topic | Original Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8504408/ https://www.ncbi.nlm.nih.gov/pubmed/33899556 http://dx.doi.org/10.1177/0271678X211010353 |
work_keys_str_mv | AT berndtnikolaus lowneuronalmetabolismduringisofluraneinducedburstsuppressionisrelatedtosynapticinhibitionwhileneurovascularcouplingandmitochondrialfunctionremainintact AT kovacsrichard lowneuronalmetabolismduringisofluraneinducedburstsuppressionisrelatedtosynapticinhibitionwhileneurovascularcouplingandmitochondrialfunctionremainintact AT schoknechtkarl lowneuronalmetabolismduringisofluraneinducedburstsuppressionisrelatedtosynapticinhibitionwhileneurovascularcouplingandmitochondrialfunctionremainintact AT rosnerjorg lowneuronalmetabolismduringisofluraneinducedburstsuppressionisrelatedtosynapticinhibitionwhileneurovascularcouplingandmitochondrialfunctionremainintact AT reiffurthclemens lowneuronalmetabolismduringisofluraneinducedburstsuppressionisrelatedtosynapticinhibitionwhileneurovascularcouplingandmitochondrialfunctionremainintact AT maechlermathilde lowneuronalmetabolismduringisofluraneinducedburstsuppressionisrelatedtosynapticinhibitionwhileneurovascularcouplingandmitochondrialfunctionremainintact AT holzhutterhermanngeorg lowneuronalmetabolismduringisofluraneinducedburstsuppressionisrelatedtosynapticinhibitionwhileneurovascularcouplingandmitochondrialfunctionremainintact AT dreierjensp lowneuronalmetabolismduringisofluraneinducedburstsuppressionisrelatedtosynapticinhibitionwhileneurovascularcouplingandmitochondrialfunctionremainintact AT spiesclaudia lowneuronalmetabolismduringisofluraneinducedburstsuppressionisrelatedtosynapticinhibitionwhileneurovascularcouplingandmitochondrialfunctionremainintact AT liottaagustin lowneuronalmetabolismduringisofluraneinducedburstsuppressionisrelatedtosynapticinhibitionwhileneurovascularcouplingandmitochondrialfunctionremainintact |