Cargando…
RVAgene: generative modeling of gene expression time series data
MOTIVATION: Methods to model dynamic changes in gene expression at a genome-wide level are not currently sufficient for large (temporally rich or single-cell) datasets. Variational autoencoders offer means to characterize large datasets and have been used effectively to characterize features of sing...
Autores principales: | Mitra, Raktim, MacLean, Adam L |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8504625/ https://www.ncbi.nlm.nih.gov/pubmed/33974008 http://dx.doi.org/10.1093/bioinformatics/btab260 |
Ejemplares similares
-
scEpath: energy landscape-based inference of transition probabilities and cellular trajectories from single-cell transcriptomic data
por: Jin, Suoqin, et al.
Publicado: (2018) -
Clustered alignments of gene-expression time series data
por: Smith, Adam A., et al.
Publicado: (2009) -
Adversarial generation of gene expression data
por: Viñas, Ramon, et al.
Publicado: (2021) -
Finding sRNA generative locales from high-throughput sequencing data with NiBLS
por: MacLean, Daniel, et al.
Publicado: (2010) -
Modeling noisy time-series data of crime with stochastic differential equations
por: Calatayud, Julia, et al.
Publicado: (2022)